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e Interactive map to view inspected properties, fire incidents, and
potential inspections in Atlanta

hazards and fire code violations, but they currently only
. inspect a subset of the total buildings needing inspection.
Goal 2: Prioritize inspections

e Integrated database of buildings with the most complete property
information

e Make a predictive model to generate risk score for properties

Our project aims to reduce fire risk in Atlanta by
identifying and prioritizing buildings that should be
inspected by AFRD.

D3.js Data Visualization

*ARC: Atlanta Regional Commission

*The type of business (and number) obtained from Google Place API includes:

Bars (629), car repairs (686), laundry (280), liquor stores (117), night clubs (163), painter (94), plumber
(167), restaurant (1661), roofing contractors (139), schools (617), and hospitals (441).

To make it easier to interpret the model results, we are going to use d3.js library to “
visualize the model and analysis results.
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