DEVELOPMENT OF REGIONAL IMPACT (DRI #4112)

TRAFFIC STUDY FOR DC BLOX - ATL WEST DATA CENTER ON NORTH RIVER ROAD

DOUGLASVILLE, GEORGIA

Prepared for:

DC BLOX 1040 Crown Pointe Parkway Suite-560 Atlanta, GA 30338

Prepared By:

A&R Engineering Inc.

2160 Kingston Court, Suite O Marietta, GA 30067 Tel: (770) 690-9255 Fax: (770) 690-9210 www.areng.com

> February 26, 2024 A & R Project # 23-198

EXECUTIVE SUMMARY

Traffic impacts were evaluated for the proposed DC BLOX - ATL West Data Center development that will be located at 1701 North River Road in the City of Douglasville, Georgia. The proposed development will include two data center buildings (80MW with 498,315 SF and 40MW with 263,537 SF) for a combined total of 761,852 SF. The development proposes access by two driveways on North River Road, as well as an emergency-access driveway on Summer Lake Road to be shared with the property to the west.

Existing and future traffic operations during the AM peak hour (7:00 am - 9:00 am) and PM peak hour (4:00 pm - 6:00 pm) before and after completion of the project were analyzed at the following intersections:

- 1. Riverside Parkway at North River Road
- 2. Riverside Parkway at Summer Lake Road
- 3. Riverside Parkway at Westpoint Parkway
- 4. North River Road at Site Driveway 1 (Western Access)

Traffic Operations Summary

Table E1 below provides a summary of traffic operations for the "No-Build" and "Build" conditions for the year 2026 with and without improvements. As per GRTA requirements, all approaches that do not meet the level of service (LOS) standard (considered failing) are highlighted in Table E1. Table E-1 also includes the project's total added trip and the respective percentage of overall total "Build" condition approach traffic volume for all failing LOS approaches after all improvements are completed.

	Table E 1 — Future Intersection Operations at Failing Approaches												
		No-	Build Condit	ion: LOS (De	lay)	Build Condition: LOS (Delay)							
Intersection		NO IMPROVEMENTS SITE MITIGATION IMPROVEMENTS		NO IMPROVEMENTS		SITE MITIGATION IMPROVEMENTS		SITE VOLUMES AT FAILING APPROACH WITH IMPROVEMENTS		PERCENT SITE TRIPS OF TOTAL APPROACH TRIPS AT FAILING APPROACHES			
		AM	PM	AM	PM	AM	PM	AM	PM	AM	PM	AM	PM
		Peak	Peak	Peak	Peak	Peak	Peak	Peak	Peak	Peak	Peak	Peak	Peak
	Riverside Parkway @ Summer												
2	Lake Road												
-	-Eastbound Approach	E (45.7)	E (36.4)	E (45.7)	E (36.4)	E (49.9)	E (37.7)	E (49.9)	E (37.7)	0	0	0%	0
	-Northbound Approach	A (8.7)	A (10.0)	A (8.7)	A (10.0)	A (8.8)	B (10.0)	A (8.8)	B (10.0)	25	33	3%	6%
	Riverside Parkway @												
	Westpoint Parkway	<u>A (5.7)</u>	<u>A (5.5)</u>	<u>A (5.7)</u>	<u>A (5.5)</u>	<u>A (5.9)</u>	<u>A (5.5)</u>	<u>A (5.9)</u>	<u>A (5.5)</u>		No Failing		No Failing
3	-Eastbound Approach	F (85.3)	C (31.4)	F (85.3)	C (31.4)	F (86.9)	C (31.9)	F (86.9)	C (31.9)	0	ı .	0%	Approach
	-Northbound Approach	A (6.0)	A (3.7)	A (6.0)	A (3.7)	A (6.4)	A (3.8)	A (6.4)	A (3.8)	25	Approach	2%	Approacti
	-Southbound Approach	A (2.2)	A (5.7)	A (2.2)	A (5.7)	A (2.2)	A (5.8)	A (2.2)	A (5.8)	31		6%	

The results of both the future "No-Build" and "Build" traffic operations analysis indicate that the eastbound approach at the intersection of Riverside Parkway and Summer Lake Road will operate at a level of service "E" in the AM and PM peak hours, while the eastbound approach at the signalized intersection of Riverside Parkway and Westpoint Parkway will operate at a level of service "F" during the AM peak hour.

The results of both the future "No-Build" and "Build" traffic operations analysis indicate that the signalized intersection of Riverside Parkway at Westpoint Parkway will continue to operate at an overall level of service "A" in both the AM and PM peak hours. The stop-controlled approaches at the unsignalized intersections will operate at a level of service "E" or better in both the AM and PM peak hours, except for the eastbound approach at the intersection of Riverside Parkway at North River Road, which will operate at a level of service "F" in the PM peak hour for both the "No-Build" and "Build" conditions. Under both "No-Build" and "Build" conditions, the eastbound (North River Road) approach at Riverside Parkway will operate with heavy delays exceeding 300 seconds. These higher delays can be primarily attributed to the projected increase in traffic volumes that will result from the new industrial developments currently under construction along North River Road.

Recommended Site Mitigation Improvements

The following site mitigation improvements are recommended:

Intersection 1: Riverside Parkway at North River Road

- Installation of a traffic signal when warranted upon approval by the City of Douglasville (see paragraph below)
- Addition of an eastbound right turn lane on North River Road
- Protected-permissive left turn phasing to be included for the northbound left approach

The posted speed limit on Riverside Parkway is 45 mph. A signal warrant analysis was performed for the study intersection per MUTCD (2009 Edition) using a major street approach speed limit of 45 mph with the intersection geometry of a one-lane major street approach and a one-lane minor street approach. An eastbound right turn reduction of 100% was applied to the North River Road approach traffic. Using the projected future volumes for the "No-Build" and "Build" conditions, the analysis results indicated that signal warrant 3 will be met for both conditions. Copies of the analyses for both conditions are included in the appendix.

A left turn phase analysis was completed to determine if any left turn movements will meet the criteria for a protected/permissive left turn phase with either a cross-product warrant are a peak volume warrant for the future AM and PM peak hours. The results of the analysis indicated that the northbound left turn movement will warrant a lagging protected/permissive phase based on the projected future "Build" condition volumes (the peak hour volume will be met for the AM peak hour and the cross-product warrant will be met for the PM peak hour). The detailed results for the left turn phase analysis are included in the appendix.

After the recommended site mitigation improvements are implemented, the intersection of Riverside Parkway at North River Road will operate at an overall level of service "C" or better with peak hour traffic, and the eastbound (North River Road) approach will operate at a level of service "D" or better.

Recommendations for Site Access Configuration

The following access configuration is recommended for the proposed site driveway intersections:

- Site Driveway 1 (Primary Access): Western full access on North River Road
 - One entering lane and one exiting lanes
 - Stop-sign controlled at the driveway approach with North River Road remaining free flow
 - o Provide/confirm adequate sight distance per AASHTO standards
- <u>Site Driveway 2 (Secondary Access): Eastern full access on cul-de-sac at the eastern end of North River Road</u>
 - One entering lane and one exiting lane
 - Stop-sign controlled at the driveway approach with North River Road remaining free flow

TABLE OF CONTENTS

Item	Page
Executive Summary	1
Introduction	1
Study Network Determination	2
Existing Roadway Facilities	
Existing Bicycle and Pedestrian Facilities	5
Alternative Modes of Access	5
Study Methodology	7
Unsignalized Intersections	7
Signalized Intersections	8
Existing 2024 Traffic Analysis	9
Existing Traffic Volumes	9
Existing Traffic Operations	12
Project Description	13
Site Plan	13
Planned Bicycle and Pedestrian Facilities	15
Potential Pedestrian and Bicycle Destinations	15
Planned Transit Facilities	15
Consistency with Adopted Comprehensive Plan	16
Future Land Use Map	16
Project Phasing	19
Trip Generation	19
Trip Distribution	19
Future 2026 Traffic Analysis	21
Future "No-Build" Conditions	21
Annual Traffic Growth	21
Planned and Programmed Improvements in Study Area	21
Nearby Planned Developments	22
Future "Build" Conditions	23
Auxiliary Lane Analysis	29
Future Traffic Operations	30
Recommended Site Mitigation Improvements	31
Conclusions and Recommendations	33
Recommended Site Mitigation Improvements	34
Recommendations for Site Access Configuration	34
Appendix	

LIST OF TABLES

ltem	Page
Table E1 – Future Intersection Operations at Failing Approaches	2
Table 1 – Level-of-service Criteria for Unsignalized Intersections	7
Table 2 – Level-of-service Criteria for Signalized Intersections	8
Table 3 – Existing Intersection Operations	12
Table 4 – Trip Generation (Proposed Development)	19
Table 5 – Planned and Programmed Improvements	
Table 6 – Trip Generation (Nearby Developments)	
Table 7 – GDOT Requirements for Left Turn Lanes	29
Table 8 – Future Intersection Operations	30
Table 9 – Future Intersection Operations with Improvements	31
LIST OF FIGURES	Page
Figure 1 – Location Map and Study Intersections	
Figure 2 – Existing Weekday Peak Hour Volumes	
Figure 3 – Existing Traffic Control and Lane Geometry	11
Figure 4 – Site Plan	
$ \ \ \text{Figure 5-Trip Distribution and Site Generated Peak Hour Volumes (Proposed Development)} \\$	
Figure 6A – Trip Distribution and Site Generated Peak Hour Volumes (Adjacent Site)	
Figure 6B – Trip Distribution and Site Generated Peak Hour Volumes (Riverside West 200)	
	26
Figure 6C – Trip Distribution and Site Generated Peak Hour Volumes (Riverside West 3)	
Figure 7 – Future (No-Build) Peak Hour Volumes	27
	27 28

INTRODUCTION

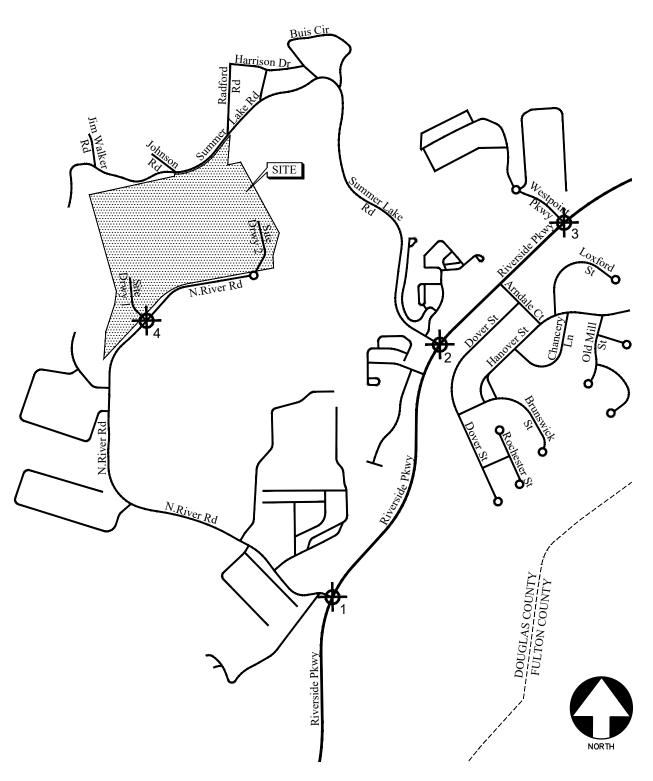
The purpose of this study is to determine the traffic impact that will result from the proposed DC BLOX - ATL West Data Center development that will be located at 1701 North River Road in the City of Douglasville, Georgia. The traffic analysis evaluates the current operations and the future conditions with the traffic generated by the development. The development will include two data center buildings (80MW with 498,315 SF and 40MW with 263,537 SF) for a combined total of 761,852 SF.

The development proposes access at the following locations:

- Site Driveway 1: Full access western driveway on North River Road
- Site Driveway 2: Full access eastern driveway on the cul-de-sac at the end of North River Road
- The development also proposes an emergency-access driveway on Summer Lake Road, to be shared with the property to the west.

Recommendations to improve traffic operations have been identified as appropriate and are discussed in detail in the following sections of the report. This study includes the evaluation of traffic operations for the AM and PM peak hours at the intersections of:

- 1. Riverside Parkway at North River Road
- 2. Riverside Parkway at Summer Lake Road
- 3. Riverside Parkway at Westpoint Parkway
- 4. North River Road at Site Driveway 1 (Western Access)


STUDY NETWORK DETERMINATION

The study network was determined by evaluating the amount of traffic that the proposed development will add to each roadway segment in the area. According to GRTA requirements, a roadway segment carries a "significant" amount of traffic if the project contributes 7% or more trips to the two-way daily service volumes of the roadway at the appropriate level of service standard. Upon agreement with GRTA a level of service standard of "D" was used for determining the study area network.

The traffic generated by the proposed project was then assigned to the area roadways using the trip distribution to determine the site-generated traffic on each roadway segment. The boundaries of the study network extend to the most distant intersections where at least 7% of the service volumes on the segment are attributed to project traffic. The following study intersections fell within the 7% rule and/or have been selected as being suitable for evaluation in discussions with ARC, GRTA, GDOT, the City of Douglasville, Douglas County and Cobb County:

- 1. Riverside Parkway at North River Road
- 2. Riverside Parkway at Summer Lake Road
- 3. Riverside Parkway at Westpoint Parkway

The location of the development and the surrounding study network is shown in Figure 1. Other intersections within this corridor, such as unsignalized side streets, right-in/right-out driveways, or private driveways have not been included in the study network.

LOCATION MAP AND STUDY INTERSECTIONS

FIGURE 1
A&R Engineering Inc.

EXISTING ROADWAY FACILITIES

The following is a brief description of each of the roadway facilities located in proximity to the site:

Riverside Parkway

Riverside Parkway is a north-south, two-lane, undivided roadway with a posted speed limit of 45 mph in the vicinity of the site. Georgia Department of Transportation (GDOT) traffic counts (Station ID 097-0165) indicate that the daily traffic volume on Riverside Parkway in 2022 was 7,390 vehicles per day south of North River Road. GDOT classifies Riverside Parkway as a minor arterial roadway.

North River Road

North River Road is a two-lane undivided roadway in the vicinity of the site.

Summer Lake Road

Summer Lake Road is a two-lane undivided roadway with a posted speed limit of 25 mph in the vicinity of the site.

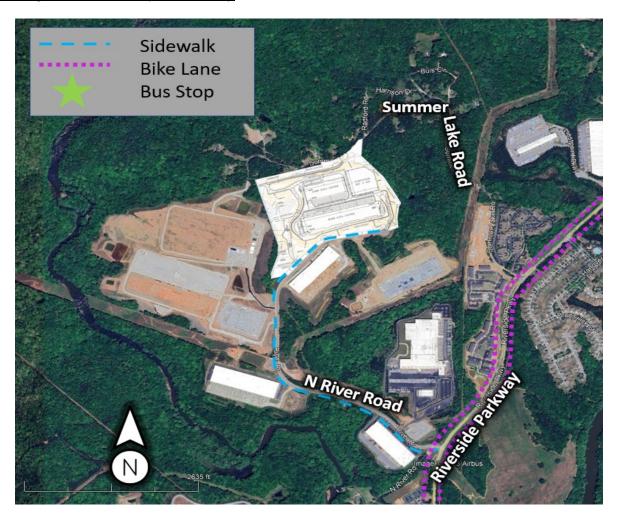
Westpoint Parkway

Westpoint Parkway is a two-lane undivided roadway in the vicinity of the site.

Existing Bicycle and Pedestrian Facilities

- Sidewalks are present on the west/north side of North River Road
- A crosswalk is present on North River Road at its intersection with Riverside Parkway
- Northbound and southbound bike lanes are available on Riverside Parkway

Below is a map showing bike paths on Riverside Parkway, SR 92 (Fairburn Road) and waking trails on SR 92/SR 154/SR 166:



Alternative Modes of Access

- There are no high-capacity transit stations in the vicinity of the proposed development.
- Douglas County's public transit bus route 30 passes through Riverside Parkway in the vicinity of
 the development, and its closest bus stop relative to the development is by the Rock House
 Road intersection, approximately 1.25 miles to the north of North River Road. A graphic with
 information about route 30 for Douglas County bus transit is available on the following
 page.

The graphic below includes the location of existing sidewalks in the study network. Existing Alternative Transportation Map

STUDY METHODOLOGY

In this study, the methodology used for evaluating traffic operations at each of the subject intersections is based on the criteria set forth in the Transportation Research Board's Highway Capacity Manual, 6th edition (HCM 6). Synchro software, which utilizes the HCM methodology, was used for the analysis. The following is a description of the methodology employed for the analysis of unsignalized and signalized intersections.

Unsignalized Intersections

For unsignalized intersections controlled by a stop sign on minor streets, the level of service (LOS) for motor vehicles with controlled movements is determined by the computed control delay according to the thresholds stated in Table 1 below. LOS is determined for each minor street movement (or shared movement), as well as major street left turns. LOS is not defined for the intersection as a whole or for major street approaches. The LOS of any controlled movement which experiences a volume-to-capacity ratio greater than 1 is designed as "F" regardless of the control delay.

Control delay for unsignalized intersections includes initial deceleration delay, queue move-up time, stopped delay and final acceleration delay. Several factors affect the control delay for unsignalized intersections, such as the availability and distribution of gaps in the conflicting traffic stream, critical gaps, and follow-up time for a vehicle in the queue.

Level of service is assigned a letter designation from "A" through "F". Level of service "A" indicates excellent operations with little delay to motorists, while level of service "F" exists when there are insufficient gaps of acceptable size to allow vehicles on the side street to cross the main road without experiencing long delays.

Table 1 — Level-of-service Criteria for Unsignalized Intersections							
Control Delay (sec/vehicle)	LOS by Volume-to-Capacity Ratio*						
Control Delay (sec/venicle)	v/c ≤ 1.0	v/c > 1.0					
≤ 10	А	F					
> 10 and ≤ 15	В	F					
> 15 and ≤ 25	С	F					
> 25 and ≤ 35	D	F					
> 35 and ≤ 50	Е	F					
> 50	F	F					

^{*}The LOS criteria apply to each lane on a given approach and to each approach on the minor street. LOS is not calculated for major-street approaches or for the intersection.

Source: Highway Capacity Manual, 6th edition, Exhibit 20-2 LOS Criteria: Motorized Vehicle Mode

Signalized Intersections

According to HCM procedures, LOS can be calculated for the entire intersection, each intersection approach, and each lane group. HCM uses control delay alone to characterize LOS for the entire intersection or an approach. Control delay per vehicle is composed of initial deceleration delay, queue move-up time, stopped delay and final acceleration delay. Both control delay and volume-to-capacity ratio are used to characterize LOS for a lane group. A volume-to-capacity ratio greater than 1.0 for a lane group indicates failure from capacity perspective. Therefore, such a lane group is assigned LOS F regardless of the amount of control delay.

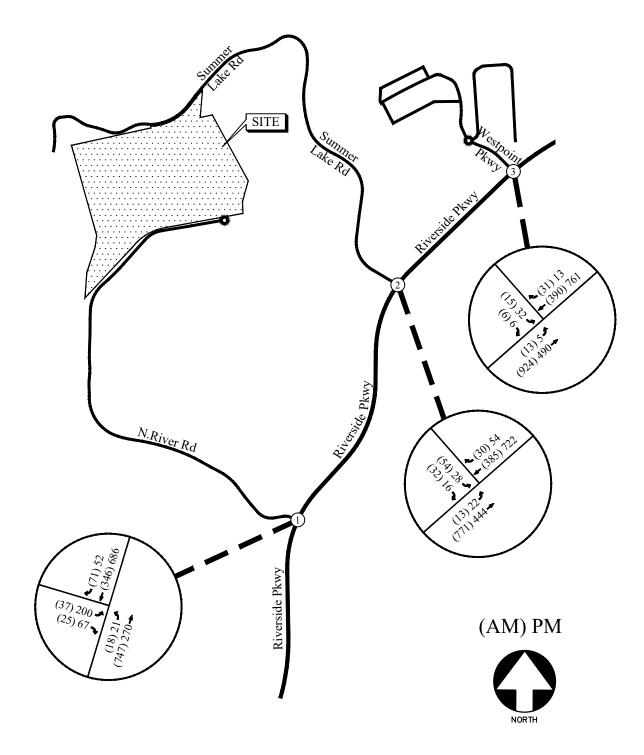
Table 2 below summarizes the LOS criteria from HCM for motorized vehicles at signalized intersections.

Table 2 – Level-of-service Criteria for Signalized Intersections							
Control Doloy (soo (yohiolo) *	LOS for Lane Group by Volume-to-Capacity Ratio*						
Control Delay (sec/vehicle) *	v/c ≤ 1.0	v/c > 1.0					
≤ 10	А	F					
> 10 and ≤ 20	В	F					
> 20 and ≤ 35	С	F					
> 35 and ≤ 55	D	F					
> 55 and ≤ 80	Е	F					
> 80	F	F					

*For approach-based and intersection wide assessments, LOS is defined solely by control delay

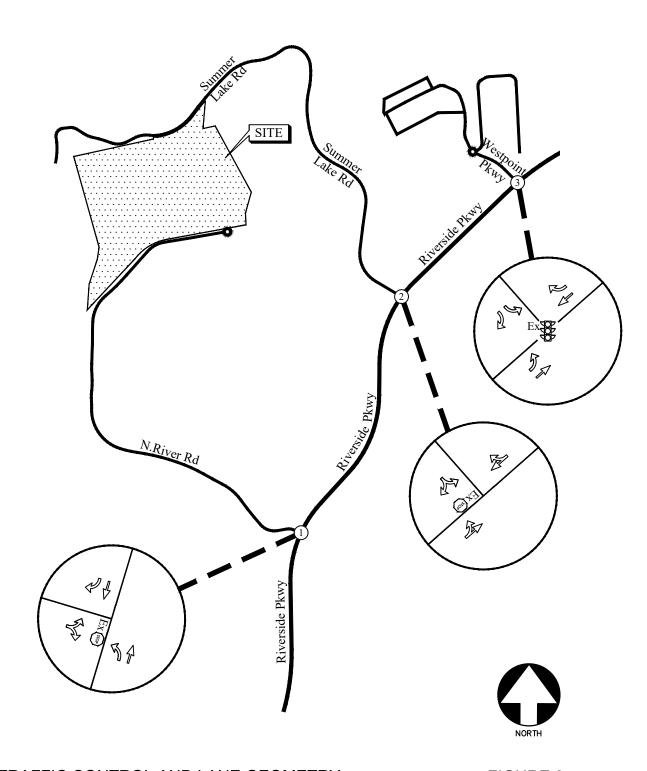
Source: Highway Capacity Manual, 6th edition, Exhibit 19-8 LOS Criteria: Motorized Vehicle Mode

LOS A is typically assigned when the volume-to-capacity (v/c) ratio is low and either progression is exceptionally favorable, or the cycle length is very short. LOS B is typically assigned when the v/c ratio is low and either progression is highly favorable, or the cycle length is short. However, more vehicles are stopped than with LOS A. LOS C is typically assigned when progression is favorable, or the cycle length is moderate. Individual cycle failures (one or more queued vehicles are not able to depart because of insufficient capacity during the cycle) may begin to appear at this level. Many vehicles still pass through the intersection without stopping, but the number of vehicles stopping is significant. LOS D is typically assigned when the v/c ratio is high and either progression is ineffective, or the cycle length is long. There are many vehicle-stops and individual cycle failures are noticeable. LOS E is typically assigned when the v/c ratio is high, progression is very poor, the cycle length is long, and individual cycle failures are frequent. LOS F is typically assigned when the v/c ratio is very high, progression is very poor, the cycle length is long, and most cycles fail to clear the queue.


EXISTING 2024 TRAFFIC ANALYSIS

Existing Traffic Volumes

Existing traffic counts were obtained at the following study intersections:


- 1. Riverside Parkway at North River Road
- 2. Riverside Parkway at Summer Lake Road
- 3. Riverside Parkway at Westpoint Parkway

Turning movement counts were collected on Tuesday, February 6, 2024. All turning movement counts were recorded during the AM and PM peak hours between 7:00 am to 9:00 am and 4:00 pm to 6:00 pm, respectively. Truck data was included separately in the counts. The four consecutive 15-minute interval volumes that produced the highest volume at the intersections were then determined. These volumes make up the peak hour traffic volumes for the intersections counted and are shown in Figure 2. The existing traffic control and lane geometry for the intersections are shown in Figure 3.

EXISTING WEEKDAY PEAK-HOUR VOLUMES

FIGURE 2
A&R Engineering Inc.

EXISTING TRAFFIC CONTROL AND LANE GEOMETRY

Existing Traffic Operations

Existing 2024 traffic operations were analyzed at the study intersections in accordance with the HCM methodology. The results of the analyses are shown below in Table 3.

	Table 3 — Existing Intersection Operations									
	Intersection	Traffic Control	AM Peak	PM Peak	LOS Standard					
1	Riverside Parkway @ North River Road -Eastbound Approach -Northbound Left	Stop Controlled on EB Approach	C (19.8) A (8.2)	F (78.4) A (9.7)	D/E D/D					
2	Riverside Parkway @ Summer Lake Road -Eastbound Approach -Northbound Left	Stop Controlled on EB Approach	D (29.6) A (8.4)	D (27.5) A (9.6)	D/D D/D					
3	Riverside Parkway @ Westpoint Parkway -Eastbound Approach -Northbound Approach -Southbound Approach	Signalized	A (5.3) E (77.6) A (5.4) A (2.3)	A (5.5) C (27.5) A (3.7) A (5.7)	<u>D/D</u> D/D D/D D/D					

The results of the existing traffic operations analysis indicate that the signalized intersection of Riverside Parkway at Westpoint Parkway is operating at an overall level of service "A" in both the AM and PM peak hours. The stop-controlled approaches at the unsignalized intersections are operating at a level of service "D" or better in both the AM and PM peak hours, except for the eastbound approach at the intersection of Riverside Parkway at North River Road, which has a level of service "F" in the PM peak hour. These areas are addressed in the future traffic operations sections.

PROJECT DESCRIPTION

The proposed DC BLOX - ATL West Data Center development will be located at 1701 North River Road in the City of Douglasville, Georgia. The project site is located to the south of I-20 and west of I-285. The development will include two data center buildings (80MW with 498,315 SF and 40MW with 263,537 SF) for a combined total of 761,852 SF.

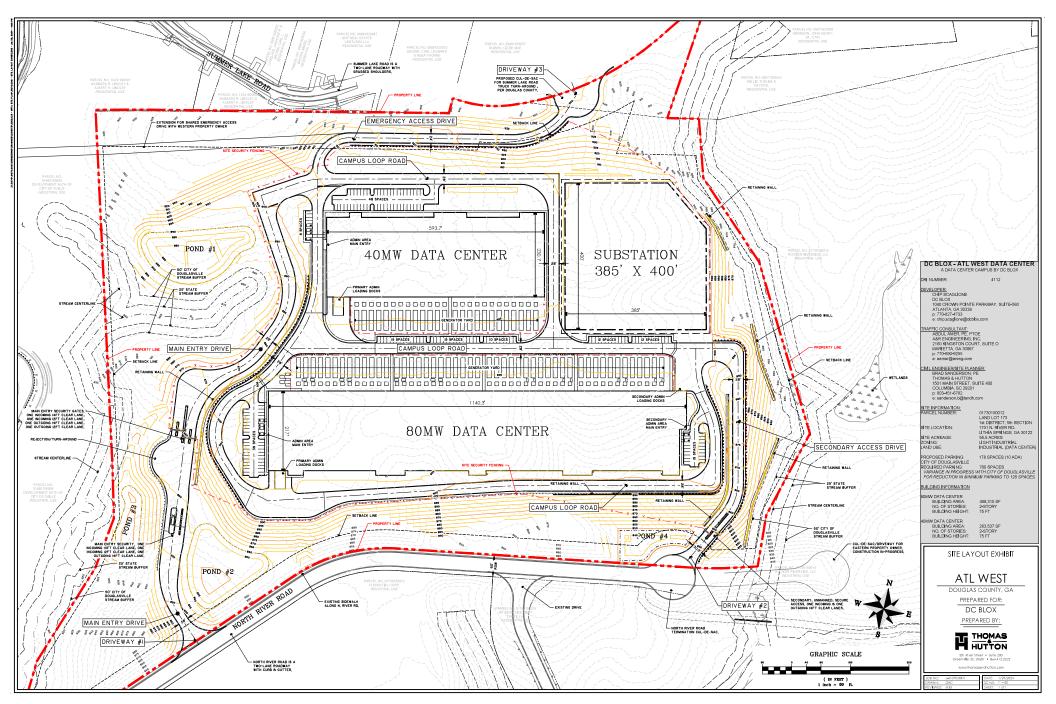
The development proposes access at the following locations:

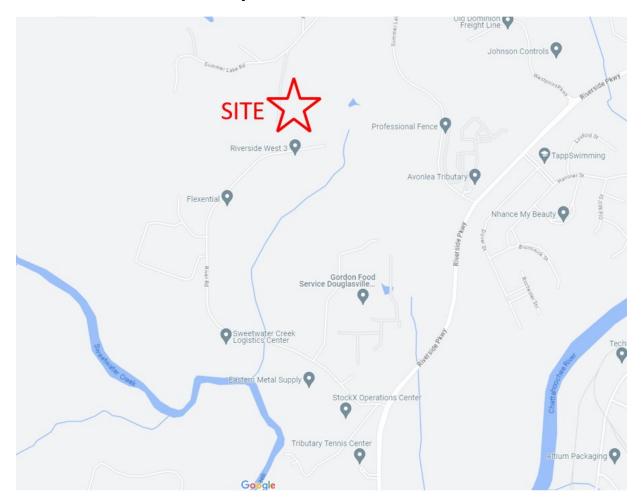
- Site Driveway 1: Full access western driveway on North River Road
- Site Driveway 2: Full access eastern driveway on the cul-de-sac at the end of North River Road

The development also proposes an emergency-access driveway on Summer Lake Road, to be shared with the property to the west.

Site Plan

A site plan is shown in Figure 4. A digital copy of the site plan is also provided with this report.




Figure 4 – Site Plan

A&R Engineering Inc.

Planned Bicycle and Pedestrian Facilities

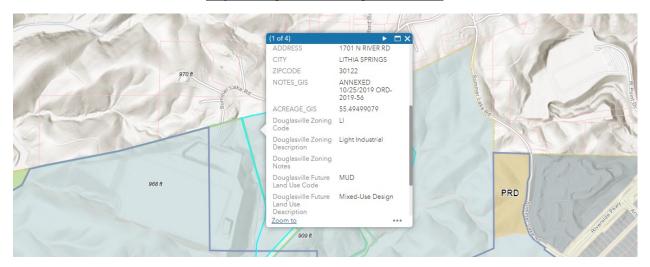
Sidewalks are present on the west/north side of North River Road (including along the proposed site frontage), and a crosswalk is present on North River Road at its intersection with Riverside Parkway. Northbound and southbound bike lanes are available on Riverside Parkway in the vicinity of the proposed development. No new pedestrian or bicycle facilities are proposed.

Potential Pedestrian and Bicycle Destinations

There are no pedestrian/bicycle destinations within a 0.25-mile radius of the property.

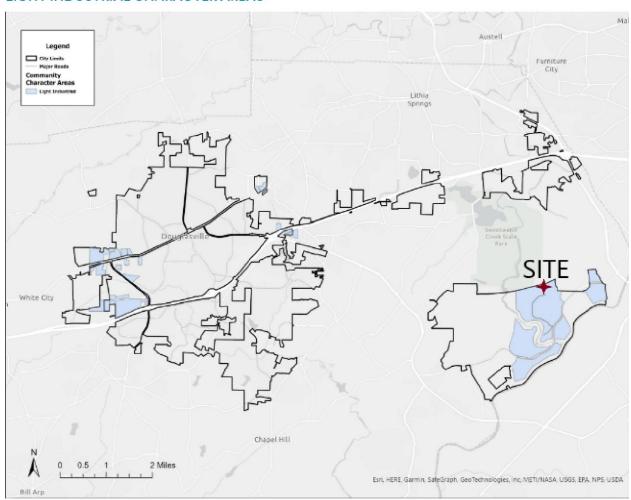
Planned Transit Facilities

Douglas County's public transit bus route 30 passes through Riverside Parkway in the vicinity of the development, and its closest bus stop relative to the development is by the Rock House Road intersection, approximately 1.25 miles to the north of North River Road. No new transit facilities are proposed.


Consistency with Adopted Comprehensive Plan

The proposed development will include two data center buildings (80MW with 498,315 SF and 40MW with 263,537 SF respectively) for a combined total of 761,852 SF. The property includes 55.5 acres of land. The site is currently zoned as Light Industrial (LI).

Future Land Use Map


Douglasville Future Land Use	MUD (Mixed-Use Design)						
City of Douglasville's Vision	The City of Douglasville's Vision: As a prosperous, vibrant, and family oriented community, Douglasvill actively embraces the City's location, history, and natural resources to support economic development and an exciting quality of life. Douglasville is committed to directing the allocation of resources and investment in the future to maintain a standard of "excellence" in cit government.						
Character Area Definition, Land-Use Vision & Goals	The updated Character Area Map is consistent with the Goals and Objectives of the City of Douglasville and satisfies the DCA's guidance for comprehensive plans to identify character areas based on existing and future land uses.						
	Character Area: Light Industrial character areas are characterized by lots suitable for this type of development. Light Industrial uses are mostly for smaller scale uses. This includes uses such as warehouses, ecommerce, and similar types of facilities. A buffer is normally required to separate from non-industrial uses.						
	Light Industrial Land Use Goals for City of Douglasville in their 2023 Douglasville Comprehensive Plan Update:						
	 Goal: Increase the number of high wage employers with more employment options to the city that will benefit residents. Retain and support existing businesses. Increase workforce development efforts to better prepare and 						
	connect young to jobs.						
Relation to Existing Land Use Plans	The proposed development is consistent with the land use vision and goals listed above.						
Chattahoochee	N/A						
River/Metropolitan River Protection Act							

City of Douglasville Zoning Information

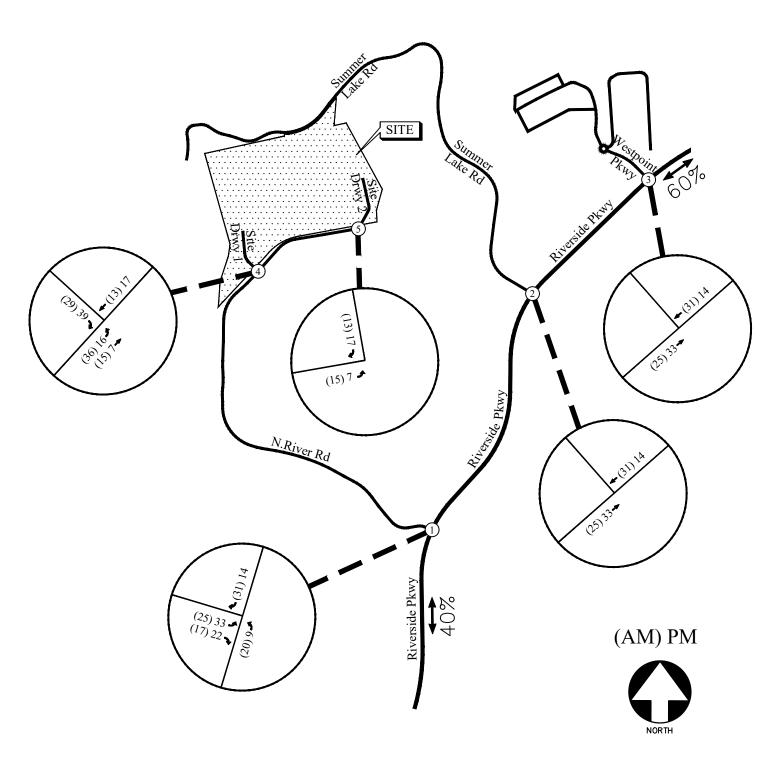
City of Douglasville's Light Industrial Character Area Map

LIGHT INDUSTRIAL CHARACTER AREAS

ARC's Growth Policy Map

Project Phasing

This project has been evaluated for the complete build-out of the development in one phase in 2026.


Trip Generation

Trip generation estimates for the project were based on the rates and equations published in the 11^{th} edition of the Institute of Transportation Engineers (ITE) Trip Generation report. This reference contains traffic volume count data collected at similar facilities nationwide. The trip generation was based on the ITE land use category 160 - Data Center. The calculated total trip generation for the proposed development is shown in Table 4.

Table 4 — Trip Generation (Proposed Development)									
Land Use	Size	AM Peak Hour			PM Peak Hour			24 Hour	
Land OSE		Enter	Exit	Total	Enter	Exit	Total	2-way	
ITE 160 – Data Center	761,852 SF	51	42	93	23	55	78	754	

Trip Distribution

The trip distribution describes how traffic arrives and departs from the site. Trip distribution for this site was developed based on the nature of the development, the locations of major roadways and highways that will serve this development, and a review of existing travel patterns in the study area. The site-generated peak hour traffic volumes, shown in Table 4, were assigned to the study area intersections based on this distribution. The outer-leg distribution and AM and PM peak hour new traffic generated by the site are shown in Figure 5.

 $\frac{\text{TRIP DISTRIBUTION AND SITE-GENERATED WEEKDAY}}{\text{PEAK HOUR VOLUMES (PROPOSED DEVELOPMENT)}}{20}$

FIGURE 5
A&R Engineering Inc.

FUTURE 2026 TRAFFIC ANALYSIS

The future 2026 traffic operations are analyzed for the "Build" and "No-Build" conditions. This provides a basis of reference for determining both the contribution of the site to overall traffic conditions and the additional improvements needed to provide sufficient site access and capacity for passing traffic.

Improvements that are identified as "System Improvements" address deficiencies that are found within the existing road network prior to any impacts from the proposed development's added traffic. Improvements that are identified as "Site Mitigation Improvements" address further impacts that are a result of the proposed development's added traffic. Note that survey and construction drawings would be needed to verify the feasibility and extent of additional right-of-way required for any recommended improvements.

Future "No-Build" Conditions

The "No-Build" (or background) conditions provide an assessment of how traffic will operate in the study horizon year without the study site being developed as proposed, with projected increases in through traffic volumes due to normal annual growth. The future "No-Build" volumes consist of the existing traffic volumes (Figure 2) plus increases for annual growth of traffic and traffic from other nearby planned developments.

Annual Traffic Growth

To evaluate future traffic operations in this area, a projection of normal traffic growth was applied to the existing volumes. The Georgia Department of Transportation recorded average daily traffic volumes at several locations in the vicinity of the site. Based on a series of historic data (2015 to 2019) from 4 GDOT traffic stations near the proposed development, a growth factor of 3.1% was calculated. A 3% growth factor was applied to the existing traffic volumes to estimate the future year traffic volumes prior to the addition of site-generated traffic.

Planned and Programmed Improvements in Study Area

The following improvements have been identified in the Regional Transportation Plan (Plan 2040), GDOT GeoPi, and/or the local comprehensive transportation plan. These improvements are within the vicinity of the proposed development.

	TABLE 5 — PLANNED AND PROGRAMMED IMPROVEMENTS										
Item	Draiget Name	Franc / To Doints	Chancar	GDOT	ARC	Design	ROW /	CST			
#	Project Name	From / To Points	From / To Points Sponsor	PI#	ID#	FY	UTL FY	FY			
1	GREENWAY TRAIL FM BOUNDARY WATERS PARK TO SWEETWATER CK PARK	Sweetwater Creek State Park at the northern termini and Boundary Waters Park at the southern project termini.	GDOT	0012877	DO-298	N/A	N/A	N/A			
2	LOWER RIVER ROAD	N/A	GDOT	H003855	N/A	N/A	N/A	N/A			

GDOT PI # 0012877

This is a project for an approximately 11-mile trail section to establish a substantial link in the Chattahoochee Hill Country for an extension of the Regional Greenway Trail System. Trail master plan includes portions of four counties (Carroll, Coweta, Douglas, and Fulton) and the City of Chattahoochee Hills. A 98-mile trail is planned to interconnect all parts of the Chattahoochee Hill Country. Implementing this plan is a long-term project, with the first trail segment now open in the Boundary Waters Park in Douglas County: 3/4 of a mile of 100% accessible trail, 12-feet wide, concrete construction, that is suitable for walkers, runners, joggers, and cyclists. The trailhead is located behind the Boundary Waters Aquatic Center in the Boundary Waters Park located in Douglas County, Georgia.

This project, P.I.# 0012877 is a proposed 11-mile link between Sweetwater Creek State Park at the northern termini and Boundary Waters Park at the southern project termini connecting to the existing .75-mile trail generally following the Chattahoochee River, Riverside Parkway and Rock House Road.

Nearby Planned Developments

There are three planned data center developments in the vicinity of the proposed site which are already under construction and are all expected to be complete by 2026. A planned 980,000 SF data center development (DRI #3080) consisting of four buildings on North River Road will be located west of the proposed DC BLOX development. This adjacent planned project will have two driveways on North River Road along with an emergency connection to Summer Lake Road. The second under-construction development (Riverside West 200) consists of a 204,700 SF data center located to the south of North River Road. The third development (Riverside West 3) consists of a 310,000 SF data center and is located to the southeast of the cull-de-sac at the end of North River Road.

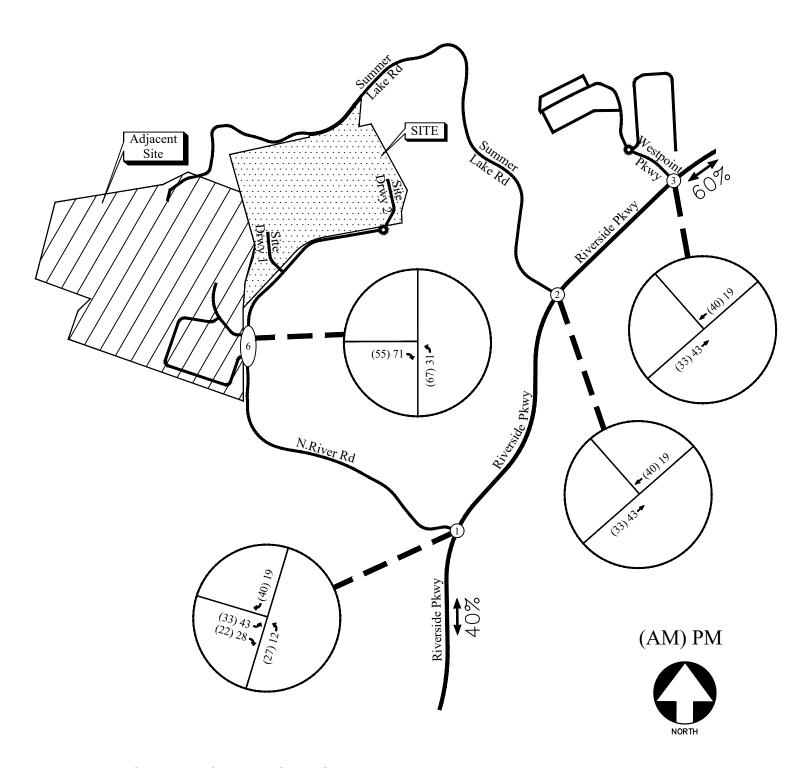
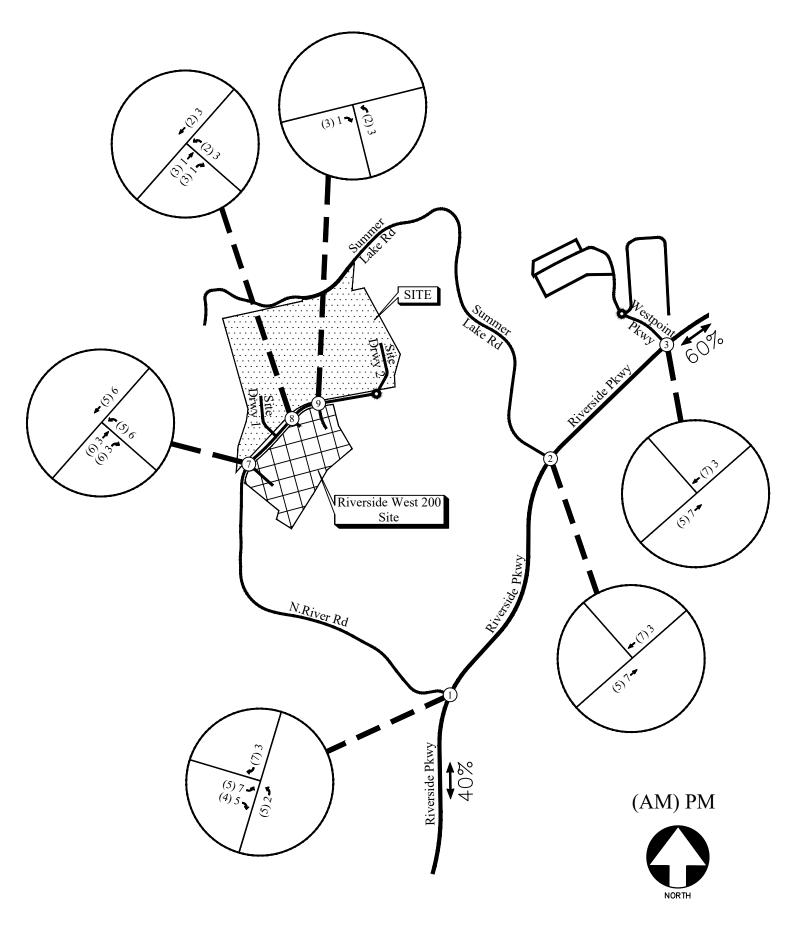
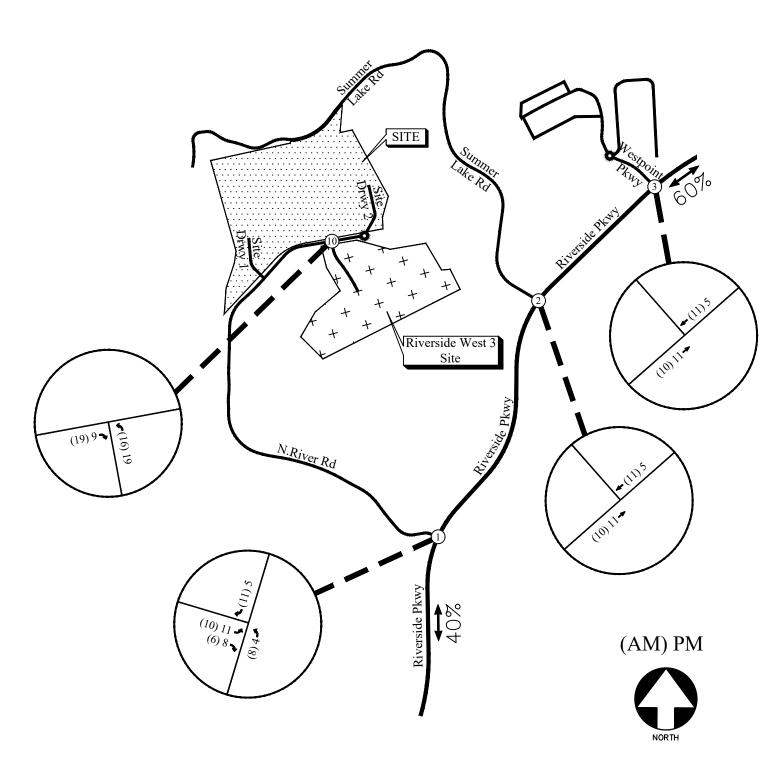

Trip generation for these developments was estimated using the ITE land use 160 – Data Center, and the projected volumes are shown below in Table 6.

Table 6 — Trip Generation (Nearby Developments)									
Land Use	Size	AM Peak Hour			PM Peak Hour			24 Hour	
Land Ose	Size	Enter	Exit	Total	Enter	Exit	Total	2-way	
Data Center (Adjacent Site)	980,000 SF	67	55	122	31	71	102	970	
Data Center (Riverside West 200)	204,700 sf	12	9	21	5	12	17	203	
Data Center (Riverside West 3)	310,000 sf	19	16	35	9	19	28	307	

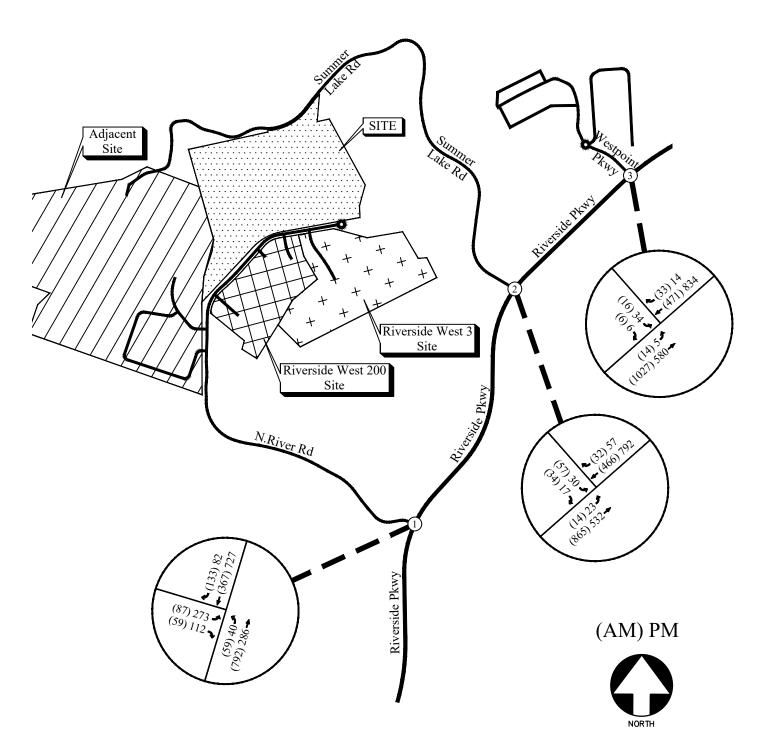
The Table 6 trips for these nearby developments were assigned to their respective driveways using the same outer leg distribution as the proposed DC BLOX site. The trip distribution and the AM and PM peak hour volumes for the nearby developments are shown in Figure 6A (Adjacent Site), Figure 6B (Riverside West 200 Site) and Figure 6C (Riverside West 3 Site). These volumes were added to the future year traffic volumes prior to the addition of site-generated traffic. The resulting future "No-Build" volumes on the roadway are shown in Figure 7.


Future "Build" Conditions

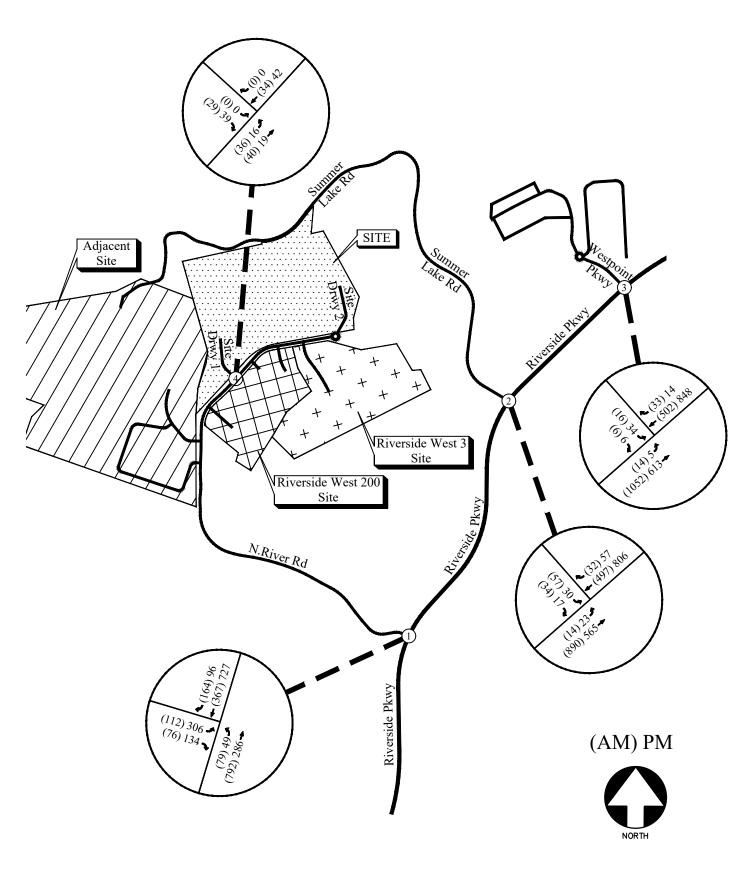
The "Build" or development conditions include the estimated background traffic from the "No-Build" conditions plus the traffic from the proposed development. To evaluate future traffic operations in this area, the additional traffic volumes from the site (Figure 5) were added to base traffic volumes (Figure 7) to calculate the future traffic volumes after the construction of the development. These total future "Build" traffic volumes are shown in Figure 8.



TRIP DISTRIBUTION AND SITE-GENERATED WEEKDAY PEAK HOUR VOLUMES (ADJACENT DEVELOPMENT)


FIGURE 6A **A&R Engineering Inc.**

TRIP DISTRIBUTION AND SITE-GENERATED WEEKDAY PEAK HOUR VOLUMES (RIVERSIDE WEST 200)



TRIP DISTRIBUTION AND SITE-GENERATED WEEKDAY PEAK HOUR VOLUMES (RIVERSIDE WEST 3)

FUTURE (NO-BUILD) WEEKDAY PEAK HOUR VOLUMES

FIGURE 7

FUTURE (BUILD) WEEKDAY PEAK HOUR VOLUMES

FIGURE 8 **A&R Engineering Inc.**

Auxiliary Lane Analysis

A left turn lane analysis has been completed for both site driveways per GDOT standards. The analysis below is based off the projected site volumes in the Trip Generation section. According to the estimated ITE trip generation, the 24-hour two-way volume for traffic entering and exiting the site is 754 vehicles. The AADT on North River Road was assumed to be under 6,000 vehicles based on historic GDOT volumes for the similar surrounding roadways. The speed limit on North River Road was taken as 30 mph.

A right turn lane analysis was not conducted since all site traffic is projected to approach from the west on North River Road and enter by turning left. There is no outlet to the east on North River Road, which ends at a cull-de-sac.

Left Turn Lane Analysis

For a two-lane roadway with an AADT under 6,000 vehicles and a posted speed limit of 30 mph, the daily site-generated traffic left turn movements threshold to warrant a turn lane is 300 left-turning vehicles a day. The projected left turn volumes per day at each driveway are included in Table 7 below.

TABLE 7 — GDOT REQUIREMENTS FOR LEFT TURN LANES									
			Roadway	GDOT					
Intersection	Left Turn Traffic	Left Turn Volume	Speed / #	Threshold	Warrants				
intersection	(% total entering)	(vehicles/day)	Lanes /	(vehicles/	Met?				
			ADT	day)					
North River Road @	70%	264	30 mph /						
	(Eastbound)	(Total Trips) $\div 2 \times 0.7 =$	2-Lane /	300	No				
Site Driveway 1 (Western)		$(754) \div 2 \times 0.7 = 264$	< 6,000						
Nambh Diver Daad @	30%	113	30 mph /						
North River Road @		(Total Trips) $\div 2 \times 0.3 =$	2-Lane /	300	No				
Site Driveway 2 (Eastern)	(Eastbound)	(754) ÷ 2 x 0.3 = 113	< 6,000						

Based on GDOT standards, a left turn lane is not warranted at either proposed site driveway.

Future Traffic Operations

The future "No-Build" and "Build" traffic operations were analyzed using the volumes in Figure 7 and 8, respectively. The results of the future traffic operations analysis are shown below in Table 8.

	Table 8 – Future In	TERSECTION	I OPERATIO	VS .	
			LOS ([Delay)	
	Intersection	NO-E	BULD	BU	ILD
		AM Peak	PM Peak	AM Peak	PM Peak
	Riverside Parkway @ North River Road				
1	-Eastbound Approach	E (45.3)	F (*)	F (104.7)	F (*)
	-Northbound Left	A (8.4)	B (10.1)	A (8.5)	B (10.1)
	Riverside Parkway @ Summer Lake Road				
2	-Eastbound Approach	E (45.7)	E (36.4)	E (49.9)	E (37.7)
	-Northbound Left	A (8.7)	A (10.0)	A (8.8)	B (10.0)
	Riverside Parkway @ Westpoint Parkway	<u>A (5.7)</u>	A (5.5)	A (5.9)	<u>A (5.5)</u>
3	-Eastbound Approach	F (85.3)	C (31.4)	F (86.9)	C (31.9)
3	-Northbound Approach	A (6.0)	A (3.7)	A (6.4)	A (3.8)
	-Southbound Approach	A (2.2)	A (5.7)	A (2.2)	A (5.8)
	North River Road @ Site Driveway 1 (Western)				
4	-Eastbound Approach	-	-	A (8.6)	A (8.7)
	-Northbound Left			A (7.3)	A (7.3)

^{*} Delay exceeds 300 seconds

The results of both the future "No-Build" and "Build" traffic operations analysis indicate that the signalized intersection of Riverside Parkway at Westpoint Parkway will continue to operate at an overall level of service "A" in both the AM and PM peak hours. The stop-controlled approaches at the unsignalized intersections will operate at a level of service "E" or better in both the AM and PM peak hours, except for the eastbound approach at the intersection of Riverside Parkway at North River Road, which will operate at a level of service "F" in the PM peak hour for both the "No-Build" and "Build" conditions. Under both "No-Build" and "Build" conditions, the eastbound (North River Road) approach at Riverside Parkway will operate with heavy delays exceeding 300 seconds. To address the heavier traffic volumes on North River Road that will result from the proposed development, as well as the traffic from the surrounding under-construction industrial developments along the same road, some site mitigation improvements at the intersection with Riverside Parkway are recommended (next page).

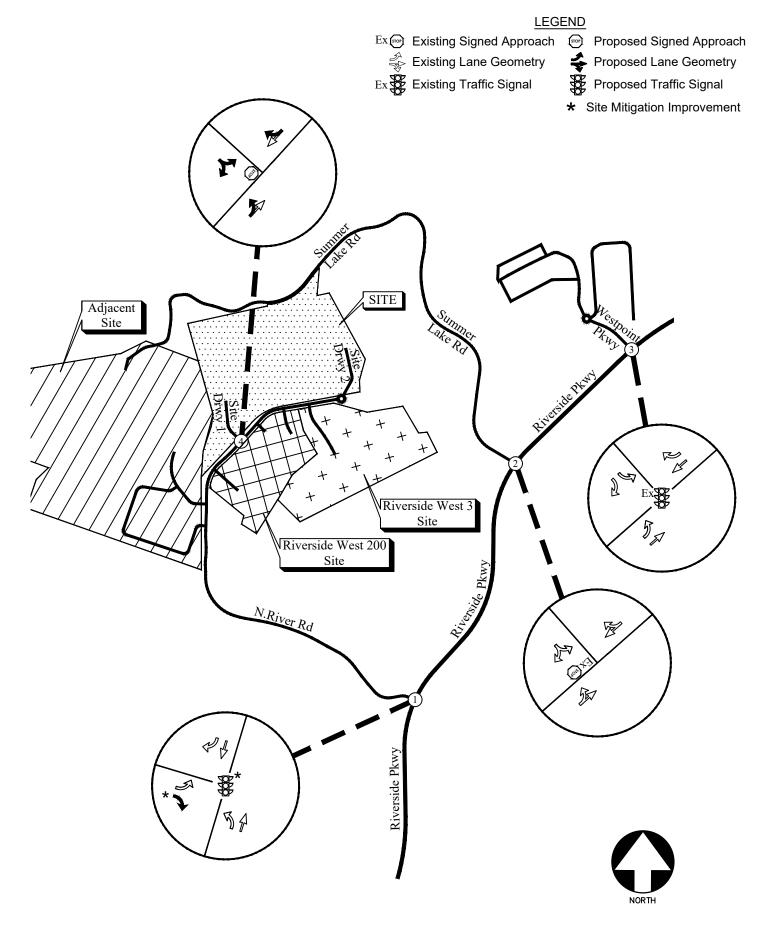
Recommended Site Mitigation Improvements

The following site mitigation improvements are recommended:

Intersection 1: Riverside Parkway at North River Road

- Installation of a traffic signal when warranted upon approval by the City of Douglasville
- Addition of an eastbound right turn lane on North River Road
- Protected-permissive left turn phasing to be included for the northbound left approach

The posted speed limit on Riverside Parkway is 45 mph. A signal warrant analysis was performed for the study intersection per MUTCD (2009 Edition) using a major street approach speed limit of 45 mph with the intersection geometry of a one-lane major street approach and a one-lane minor street approach. An eastbound right turn reduction of 100% was applied to the North River Road approach traffic. Using the projected future volumes for the "No-Build" and "Build" conditions, the analysis results indicated that signal warrant 3 will be met for both conditions. Copies of the analyses for both conditions are included in the appendix.


A left turn phase analysis was completed to determine if any left turn movements will meet the criteria for a protected/permissive left turn phase with either a cross-product warrant are a peak volume warrant for the future AM and PM peak hours. The results of the analysis indicated that the northbound left turn movement will warrant a lagging protected/permissive phase based on the projected future "Build" condition volumes (the peak hour volume will be met for the AM peak hour and the cross-product warrant will be met for the PM peak hour). The detailed results for the left turn phase analysis are included in the appendix.

The results of the future traffic operations with the recommended site mitigation improvements are shown below in Table 9.

	Table 9 – Future Intersection	N OPERATIC	NS WITH IMI	PROVEMENT	s
			LOS ([Delay)	
	Intersection	NO-E	ULD	BU	ILD
		AM Peak	PM Peak	AM Peak	PM Peak
	Riverside Parkway @ North River Road	A (7.1)	B (12.9)	A (9.6)	<u>C (22.8)</u>
1	-Eastbound Approach	C (27.5)	C (24.4)	C (28.8)	D (42.6)
1	-Northbound Approach	A (6.6)	A (7.0)	A (7.1)	A (7.1)
	-Southbound Approach	A (3.5)	B (11.3)	A (9.6)	C (21.8)

After the recommended improvements are implemented, the intersection of Riverside Parkway at North River Road will operate at an overall level of service "C" or better with peak hour traffic, and the eastbound (North River Road) approach will operate at a level of service "D" or better.

Recommendations for future traffic control and lane geometry are shown in Figure 9.

FUTURE TRAFFIC CONTROL AND LANE GEOMETRY

FIGURE 9

CONCLUSIONS AND RECOMMENDATIONS

Traffic impacts were evaluated for the proposed DC BLOX - ATL West Data Center development that will be located at 1701 North River Road in the City of Douglasville, Georgia. The proposed development will include two data center buildings (80MW with 498,315 SF and 40MW with 263,537 SF) for a combined total of 761,852 SF.

The development proposes access at the following locations:

- Site Driveway 1: Full access western driveway on North River Road
- Site Driveway 2: Full access eastern driveway on the cul-de-sac at the end of North River Road
- The development also proposes an emergency-access driveway on Summer Lake Road, to be shared with the property to the west.

This study included the evaluation of traffic operations for the AM and PM peak hours at the intersections of:

- 1. Riverside Parkway at North River Road
- 2. Riverside Parkway at Summer Lake Road
- 3. Riverside Parkway at Westpoint Parkway
- 4. North River Road at Site Driveway 1 (Western Access)

The analysis included the evaluation of Future operations for "No-Build" and "Build" conditions, both of which account for increases in annual growth of through traffic and added traffic from other nearby planned developments. The results of both the future "No-Build" and "Build" traffic operations analysis indicate that the signalized intersection of Riverside Parkway at Westpoint Parkway will continue to operate at an overall level of service "A" in both the AM and PM peak hours. The stop-controlled approaches at the unsignalized intersections will operate at a level of service "E" or better in both the AM and PM peak hours, except for the eastbound approach at the intersection of Riverside Parkway at North River Road, which will operate at a level of service "F" in the PM peak hour for both the "No-Build" and "Build" conditions, the eastbound (North River Road) approach at Riverside Parkway will operate with heavy delays exceeding 300 seconds. To address the heavier traffic volumes on North River Road that will result from the proposed development, as well as the traffic from the surrounding under-construction industrial developments along the same road, some site mitigation improvements at the intersection with Riverside Parkway are recommended (next page).

Recommended Site Mitigation Improvements

The following site mitigation improvements are recommended:

Intersection 1: Riverside Parkway at North River Road

- Installation of a traffic signal when warranted upon approval by the City of Douglasville (see paragraph below)
- Addition of an eastbound right turn lane on North River Road
- Protected-permissive left turn phasing to be included for the northbound left approach

The posted speed limit on Riverside Parkway is 45 mph. A signal warrant analysis was performed for the study intersection per MUTCD (2009 Edition) using a major street approach speed limit of 45 mph with the intersection geometry of a one-lane major street approach and a one-lane minor street approach. An eastbound right turn reduction of 100% was applied to the North River Road approach traffic. Using the projected future volumes for the "No-Build" and "Build" conditions, the analysis results indicated that signal warrant 3 will be met for both conditions. Copies of the analyses for both conditions are included in the appendix.

A left turn phase analysis was completed to determine if any left turn movements will meet the criteria for a protected/permissive left turn phase with either a cross-product warrant are a peak volume warrant for the future AM and PM peak hours. The results of the analysis indicated that the northbound left turn movement will warrant a lagging protected/permissive phase based on the projected future "Build" condition volumes (the peak hour volume will be met for the AM peak hour and the cross-product warrant will be met for the PM peak hour). The detailed results for the left turn phase analysis are included in the appendix.

After the recommended improvements are implemented, the intersection of Riverside Parkway at North River Road will operate at an overall level of service "C" or better with peak hour traffic, and the eastbound (North River Road) approach will operate at a level of service "D" or better.

Recommendations for Site Access Configuration

The following access configuration is recommended for the proposed site driveway intersections:

- Site Driveway 1 (Primary Access): Western full access on North River Road
 - One entering lane and one exiting lanes
 - Stop-sign controlled at the driveway approach with North River Road remaining free flow
 - Provide/confirm adequate sight distance per AASHTO standards
- <u>Site Driveway 2 (Secondary Access): Eastern full access on cul-de-sac at the eastern end of North</u> River Road
 - One entering lane and one exiting lane
 - Stop-sign controlled at the driveway approach with North River Road remaining free flow

Appendix

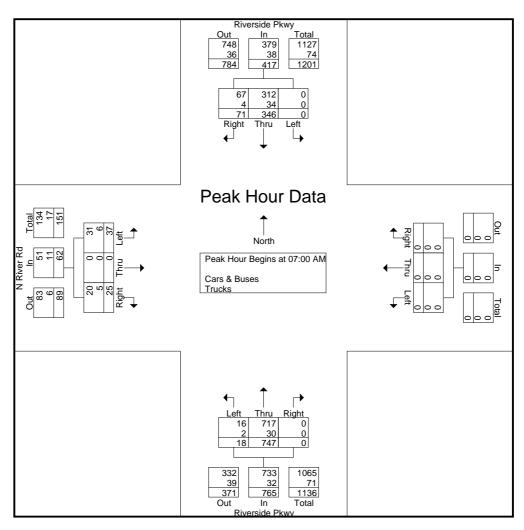
Existing intersection Traffic Counts
Character Areas
GRTA Letter of Understanding
Linear Regression of Daily Traffic
Fact Sheets for Planned and Programmed Improvements
Existing Intersection Analysis
Future "No-Build" Intersection Analysis
Future "No-Build" Intersection Analysis with Improvements
Future "Build" Intersections Analysis
Future "Build" Intersections Analysis with Improvements
Signal Warrant Analysis/Left Turn Phase Analysis
Traffic Volume Worksheets

Existing Intersection Traffic Counts

2160 Kingston Court, Suite 'O' Marietta, GA 30067

TMC DATA Riverside Parkway @ N River Road 7-9 am | 4-6 pm

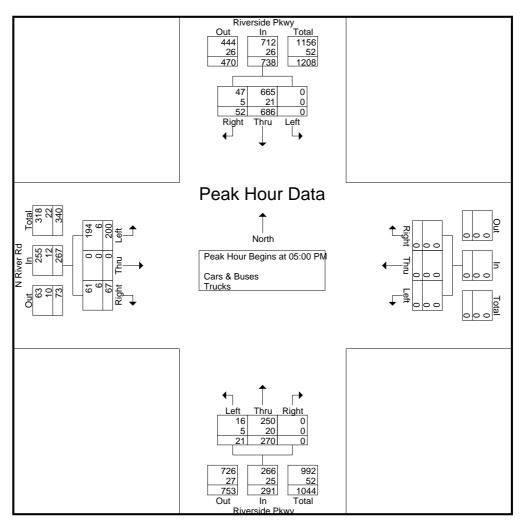
File Name: 20240043 Site Code : 20240043 Start Date : 02-06-2024


Page No : 1

	T							ed- Cars	& Buse								
			ide Pkw	'y			de Pkw	/y			ver Rd						
0			bound				bound				bound				bound		
Start Time	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Int. Total
07:00 AM	5	206	0	211	0	94	13	107	9	0	7	16	0	0	0	0	334
07:15 AM	4	196	0	200	0	95	18	113	7	0	6	13	0	0	0	0	326
07:30 AM	4	201	0	205	0	89	20	109	10	0	6	16	0	0	0	0	330
07:45 AM	5	144	0	149	0	68	20	88	11	0	6	17	0	0	0	0	254
Total	18	747	0	765	0	346	71	417	37	0	25	62	0	0	0	0	1244
00.00.414	1 40	4.45	•	455	•	00	40	00	40	•	•	04	•	•	•	0	050
08:00 AM	10	145	0	155	0	63	19	82	13	0	8	21	0	0	0	0	258
08:15 AM	3	121	0	124	0	59	17	76	9	0	5	14	0	0	0	0	214
08:30 AM	5	103	0	108	0	59	18	77	13	0	4	17	0	0	0	0	202
08:45 AM	3	63	0_	66	0	46	17_	63	13_	0	5_	18	0	0	0	0	147
Total	21	432	0	453	0	227	71	298	48	0	22	70	0	0	0	0	821
*** BREAK ***	k																
04:00 PM	2	74	0	76	0	131	9	140	21	0	11	32	0	0	0	0	248
04:15 PM	5	72	0	77	0	132	11	143	28	0	9	37	0	0	0	0	257
04:30 PM	4	63	0	67	0	186	7	193	29	0	8	37	0	0	0	0	297
04:45 PM	6	62	0	68	0	160	10	170	11	0	14	25	0	0	0	0	263
Total	17	271	0	288	0	609	37	646	89	0	42	131	0	0	0	0	1065
05:00 PM	9	89	0	98	0	197	6	203	32	0	12	44	0	0	0	0	345
05:15 PM	4	71	0	75	0	153	15	168	42	0	15	57	0	0	0	0	300
05:30 PM	4	50	0	54	0	185	11	196	77	0	16	93	0	0	0	0	343
05:45 PM	4	60	0	64	0	151	20	171	49	0	24	73	0	Ö	Ö	0	308
Total	21	270	0	291	0	686	52	738	200	0	67	267	0	0	0	0	1296
rotar		_, _	Ŭ	201	Ū	000	02	700	200	ŭ	01	20.	Ü	Ū	Ŭ	0 1	1200
Grand Total	77	1720	0	1797	0	1868	231	2099	374	0	156	530	0	0	0	0	4426
Apprch %	4.3	95.7	0		0	89	11		70.6	0	29.4		0	0	0		
Total %	1.7	38.9	0	40.6	0	42.2	5.2	47.4	8.5	0	3.5	12	0	0	0	0	
Cars & Buses	63	1635	0	1698	0	1773	211	1984	348	0	135	483	0	0	0	0	4165
% Cars & Buses	81.8	95.1	0	94.5	0	94.9	91.3	94.5	93	0	86.5	91.1	0	0	0	0	94.1
Trucks	14	85	0	99	0	95	20	115	26	0	21	47	0	0	0	0	261
% Trucks	18.2	4.9	0	5.5	0	5.1	8.7	5.5	7	0	13.5	8.9	0	0	0	0	5.9

2160 Kingston Court, Suite 'O' Marietta, GA 30067

TMC DATA Riverside Parkway @ N River Road 7-9 am | 4-6 pm File Name : 20240043 Site Code : 20240043 Start Date : 02-06-2024


		Riversi	de Pkw	у		Riversi	de Pkw	у		N Riv	ver Rd						
		North	bound			South	bound			East	bound			West	bound		
Start Time	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Int. Total
Peak Hour An	alysis F	rom 07	7:00 AM	to 08:4	5 AM -	Peak 1	of 1										
Peak Hour for	Entire	Interse	ction Be	egins at	07:00 A	M											
07:00 AM	5	206	0	211	0	94	13	107	9	0	7	16	0	0	0	0	334
07:15 AM	4	196	0	200	0	95	18	113	7	0	6	13	0	0	0	0	326
07:30 AM	4	201	0	205	0	89	20	109	10	0	6	16	0	0	0	0	330
07:45 AM	5	144	0	149	0	68	20	88	11	0	6	17	0	0	0	0	254
Total Volume	18	747	0	765	0	346	71	417	37	0	25	62	0	0	0	0	1244
% App. Total	2.4	97.6	0		0	83	17		59.7	0	40.3		0	0	0		
PHF	.900	.907	.000	.906	.000	.911	.888	.923	.841	.000	.893	.912	.000	.000	.000	.000	.931
Cars & Buses	16	717	0	733	0	312	67	379	31	0	20	51	0	0	0	0	1163
% Cars & Buses	88.9	96.0	0	95.8	0	90.2	94.4	90.9	83.8	0	80.0	82.3	0	0	0	0	93.5
Trucks	2	30	0	32	0	34	4	38	6	0	5	11	0	0	0	0	81
% Trucks	11.1	4.0	0	4.2	0	9.8	5.6	9.1	16.2	0	20.0	17.7	0	0	0	0	6.5

2160 Kingston Court, Suite 'O' Marietta, GA 30067

TMC DATA Riverside Parkway @ N River Road 7-9 am | 4-6 pm File Name : 20240043 Site Code : 20240043 Start Date : 02-06-2024

		Riversion	de Pkw	у		Riversi	de Pkw	у		N Ri	ver Rd						
		North	bound			South	bound			East	bound			West	bound		
Start Time	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Int. Total
Peak Hour An	alysis F	rom 04	:00 PM	to 05:4	5 PM -	Peak 1	of 1										
Peak Hour for	Entire	Intersed	ction Be	egins at	05:00 F	M											
05:00 PM	9	89	0	98	0	197	6	203	32	0	12	44	0	0	0	0	345
05:15 PM	4	71	0	75	0	153	15	168	42	0	15	57	0	0	0	0	300
05:30 PM	4	50	0	54	0	185	11	196	77	0	16	93	0	0	0	0	343
05:45 PM	4	60	0	64	0	151	20	171	49	0	24	73	0	0	0	0	308
Total Volume	21	270	0	291	0	686	52	738	200	0	67	267	0	0	0	0	1296
% App. Total	7.2	92.8	0		0	93	7		74.9	0	25.1		0	0	0		
PHF	.583	.758	.000	.742	.000	.871	.650	.909	.649	.000	.698	.718	.000	.000	.000	.000	.939
Cars & Buses	16	250	0	266	0	665	47	712	194	0	61	255	0	0	0	0	1233
% Cars & Buses	76.2	92.6	0	91.4	0	96.9	90.4	96.5	97.0	0	91.0	95.5	0	0	0	0	95.1
Trucks	5	20	0	25	0	21	5	26	6	0	6	12	0	0	0	0	63
% Trucks	23.8	7.4	0	8.6	0	3.1	9.6	3.5	3.0	0	9.0	4.5	0	0	0	0	4.9

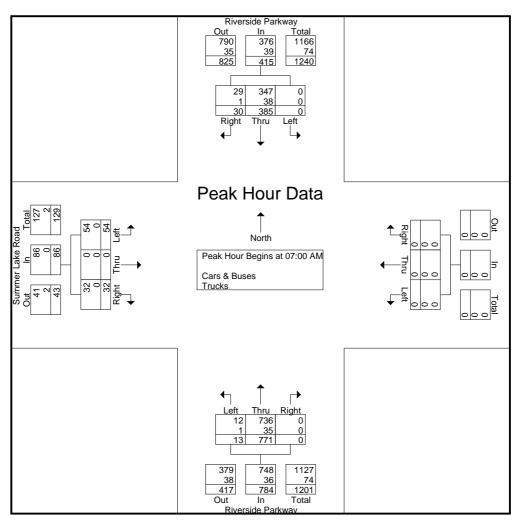
2160 Kingston Court, Suite 'O' Marietta, GA 30067

TMC Data Riverside Parkway @ Summer Lake Road

7-9 am | 4-6 pm

File Name : 20240044 Site Code : 20240044 Start Date : 02-06-2024

								ed- Cars	& Buse	es - Tru	icks						
	R	iverside	e Parkv	vay	R	iversid	e Parkv	vay	Su	ımmer	Lake R	oad					
		North	bound			South	bound			East	bound				bound		
Start Time	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Int. Total
07:00 AM	3	212	0	215	0	100	6	106	22	0	7	29	0	0	0	0	350
07:15 AM	0	203	0	203	0	101	7	108	14	0	12	26	0	0	0	0	337
07:30 AM	5	206	0	211	0	101	10	111	9	0	8	17	0	0	0	0	339
07:45 AM	5	150	0	155	0	83	7	90	9	0	5	14	0	0	0	0	259
Total	13	771	0	784	0	385	30	415	54	0	32	86	0	0	0	0	1285
	ii																
08:00 AM	4	154	0	158	0	77	6	83	7	0	5	12	0	0	0	0	253
08:15 AM	3	127	0	130	0	75	5	80	10	0	1	11	0	0	0	0	221
08:30 AM	4	112	0	116	0	75	7	82	10	0	2	12	0	0	0	0	210
08:45 AM	2	73_	0	75	0	60	0	60	11	0	3	14	0	0	0	0	149
Total	13	466	0	479	0	287	18	305	38	0	11	49	0	0	0	0	833
*** BREAK ***	r																
04.00 514				a= 1		400	4.0	4-4	_		_		_		•	ا م	
04:00 PM	3	92	0	95	0	138	16	154	9	0	2	11	0	0	0	0	260
04:15 PM	8	92	0	100	0	136	15	151	7	0	7	14	0	0	0	0	265
04:30 PM	3	89	0	92	0	188	8	196	18	0	5	23	0	0	0	0	311
04:45 PM	2	71	0	73	0	167	6	173	3	0	3	6	0	0	0	0	252
Total	16	344	0	360	0	629	45	674	37	0	17	54	0	0	0	0	1088
05:00 PM		440	0	404	0	004	45	040	7	•	0	0	0	0	0	ا م	0.40
	3	118 107	0	121	0	201	15	216	7	0	2	9	0	0	0 0	0	346
05:15 PM	4 5		0	111	0	165	12	177	6 7	0	3 6	9 13	0	0	-	0	297
05:30 PM	_	121	0	126	0	190	17	207	•	•	-		•	0	0	0	346
05:45 PM	10	98	0	108	0	166	10	176	8	0	5	13	0	0	0	0	297
Total	22	444	0	466	0	722	54	776	28	0	16	44	0	0	0	0	1286
Grand Total	64	2025	0	2089	0	2023	147	2170	157	0	76	233	0	0	0	0	4492
Apprch %	3.1	96.9	0	2009	0	93.2	6.8	2170	67.4	0	32.6	233	0	0	0	U	4432
Total %	1.4	45.1	0	46.5	0	45	3.3	48.3	3.5	0	1.7	5.2	0	0	0	0	
Cars & Buses	63	1920	0	1983	0	1908	<u>3.3_</u> 146	2054	<u>3.5_</u> 157	0		233	0	0	0	0	4270
% Cars & Buses	98.4	94.8	0	94.9	0	94.3	99.3	94.7	100	0	100	100	0	0	0	0	95.1
Trucks	90.4	94.6 _ 105	0	106	0	94.3 115	_ 99.3 _ 1	116	0	0	0	0	0	0	0	0	222
% Trucks	1.6	5.2	0	5.1	0	5.7	0.7	5.3	0	0	0	0	0	0	0	0	4.9
70 TTUCKS	1.0	5.2	U	5.1	U	5.7	0.7	5.5	U	U	U	U	U	U	U	U	4.9

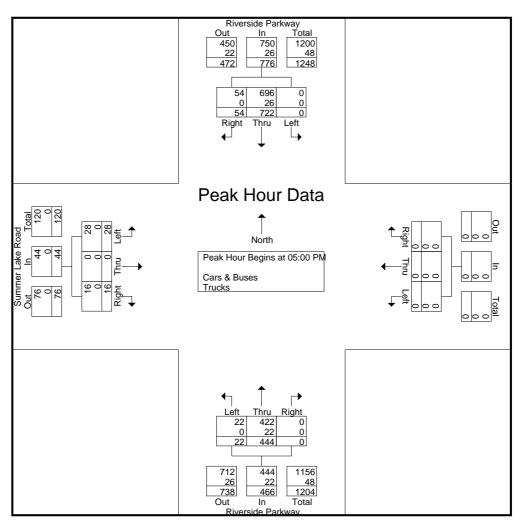

2160 Kingston Court, Suite 'O' Marietta, GA 30067

TMC Data
Riverside Parkway @ Summer Lake Road

7-9 am | 4-6 pm

File Name : 20240044 Site Code : 20240044 Start Date : 02-06-2024

	R	iverside	Parkw	ay ay	R	iversid	e Parkw	ay	Sı	ımmer	Lake R	oad					
		North	bound			South	nbound			East	bound			West	bound		
Start Time	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Int. Total
Peak Hour An	alysis F	rom 07	7:00 AM	1 to 08:4	5 AM -	Peak 1	of 1										
Peak Hour for	Entire	Interse	ction Be	egins at	07:00 A	M											
07:00 AM	3	212	0	215	0	100	6	106	22	0	7	29	0	0	0	0	350
07:15 AM	0	203	0	203	0	101	7	108	14	0	12	26	0	0	0	0	337
07:30 AM	5	206	0	211	0	101	10	111	9	0	8	17	0	0	0	0	339
07:45 AM	5	150	0	155	0	83	7	90	9	0	5	14	0	0	0	0	259
Total Volume	13	771	0	784	0	385	30	415	54	0	32	86	0	0	0	0	1285
% App. Total	1.7	98.3	0		0	92.8	7.2		62.8	0	37.2		0	0	0		
PHF	.650	.909	.000	.912	.000	.953	.750	.935	.614	.000	.667	.741	.000	.000	.000	.000	.918
Cars & Buses	12	736	0	748	0	347	29	376	54	0	32	86	0	0	0	0	1210
% Cars & Buses	92.3	95.5	0	95.4	0	90.1	96.7	90.6	100	0	100	100	0	0	0	0	94.2
Trucks	1	35	0	36	0	38	1	39	0	0	0	0	0	0	0	0	75
% Trucks	7.7	4.5	0	4.6	0	9.9	3.3	9.4	0	0	0	0	0	0	0	0	5.8


2160 Kingston Court, Suite 'O' Marietta, GA 30067

TMC Data Riverside Parkway @ Summer Lake Road 7-9 am | 4-6 pm

Site Code : 20240044 Start Date : 02-06-2024

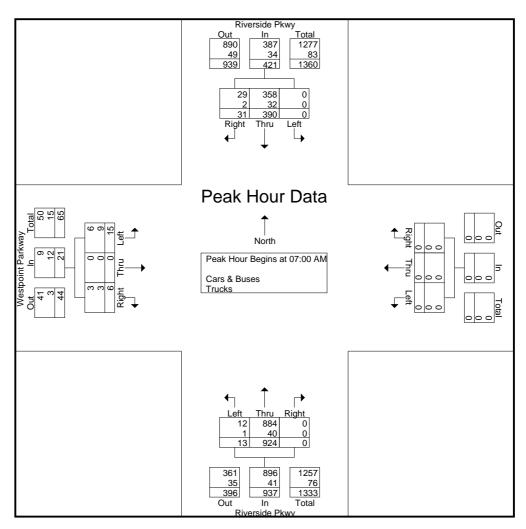
File Name: 20240044

	R	iverside	Parkw	ay	R	iverside	e Parkw	ay	Su	ımmer	Lake Ro	oad					
		North	bound			South	bound			East	bound			West	bound		
Start Time	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Int. Total
Peak Hour An	alysis F	rom 04	1:00 PM	to 05:4	5 PM -	Peak 1	of 1										
Peak Hour for	Entire	Interse	ction Be	egins at	05:00 F	M											
05:00 PM	3	118	0	121	0	201	15	216	7	0	2	9	0	0	0	0	346
05:15 PM	4	107	0	111	0	165	12	177	6	0	3	9	0	0	0	0	297
05:30 PM	5	121	0	126	0	190	17	207	7	0	6	13	0	0	0	0	346
05:45 PM	10	98	0	108	0	166	10	176	8	0	5	13	0	0	0	0	297
Total Volume	22	444	0	466	0	722	54	776	28	0	16	44	0	0	0	0	1286
% App. Total	4.7	95.3	0		0	93	7		63.6	0	36.4		0	0	0		
PHF	.550	.917	.000	.925	.000	.898	.794	.898	.875	.000	.667	.846	.000	.000	.000	.000	.929
Cars & Buses	22	422	0	444	0	696	54	750	28	0	16	44	0	0	0	0	1238
% Cars & Buses	100	95.0	0	95.3	0	96.4	100	96.6	100	0	100	100	0	0	0	0	96.3
Trucks	0	22	0	22	0	26	0	26	0	0	0	0	0	0	0	0	48
% Trucks	0	5.0	0	4.7	0	3.6	0	3.4	0	0	0	0	0	0	0	0	3.7

2160 Kingston Court, Suite 'O' Marietta, GA 30067

TMC Data Riverside Pkwy @ Westpoint Parkway 7-9 am | 4-6 pm File Name : 20240045 Site Code : 20240045 Start Date : 02-06-2024

						Group	s Printe	ed- Cars	& Buse	es - Tru	icks						
		Riversi	de Pkw	y		Riversi	de Pkw	y	W	estpoir	nt Parkv	vay					
		North	bound	-		South	bound	-		East	bound	-		West	bound		
Start Time	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Int. Total
07:00 AM	6	242	0	248	0	90	6	96	1	0	0	1	0	0	0	0	345
07:15 AM	0	234	0	234	0	101	10	111	5	0	1	6	0	0	0	0	351
07:30 AM	4	233	0	237	0	106	10	116	7	0	1	8	0	0	0	0	361
07:45 AM	3	215	0	218	0	93	5	98	2	0	4	6	0	0	0	0	322
Total	13	924	0	937	0	390	31	421	15	0	6	21	0	0	0	0	1379
08:00 AM	4	168	0	172	0	80	9	89	3	0	1	4	0	0	0	0	265
08:15 AM	2	149	0	151	0	80	8	88	2	0	1	3	0	0	0	0	242
08:30 AM	7	131	0	138	0	93	7	100	2	0	2	4	0	0	0	0	242
08:45 AM	0	105	0_	105	0	62	9_	71	2	0	2	4	0	0	0	0	180
Total	13	553	0	566	0	315	33	348	9	0	6	15	0	0	0	0	929
*** BREAK ***	ŧ.																
DREAR																	
04:00 PM	1	101	0	102	0	146	7	153	11	0	6	17	0	0	0	0	272
04:00 FM	3	102	0	102	0	160	8	168	8	0	3	11	0	0	0	0	284
04:30 PM	1	99	0	100	0	162	3	165	17	0	15	32	0	0	0	0	297
04:45 PM	Ö	80	0	80	Ö	181	6	187	6	Ö	3	9	0	0	Ö	0	276
Total	5	382	0	387	0	649	24	673	42	0	27	69	0	0	0	0	1129
10141	, ,	002	Ŭ	001	Ŭ	0.0		0.0		Ŭ		00	Ŭ	Ū	Ū	0 1	1120
05:00 PM	3	131	0	134	0	205	3	208	9	0	4	13	0	0	0	0	355
05:15 PM	0	122	0	122	0	174	3	177	6	0	1	7	0	0	0	0	306
05:30 PM	1	130	0	131	0	210	6	216	11	0	1	12	0	0	0	0	359
05:45 PM	1	107	0	108	0	172	1	173	6	0	0	6	0	0	0	0	287
Total	5	490	0	495	0	761	13	774	32	0	6	38	0	0	0	0	1307
												1				i	
Grand Total	36	2349	0	2385	0	2115	101	2216	98	0	45	143	0	0	0	0	4744
Apprch %	1.5	98.5	0		0	95.4	4.6		68.5	0	31.5		0	0	0		
Total %	0.8	49.5	0	50.3	0	44.6	2.1	46.7	2.1	0	0.9	3	0	0	0	0	
Cars & Buses	26	2246	0	2272	0	2019	66	2085	69	0	36	105	0	0	0	0	4462
% Cars & Buses	72.2	95.6	0	95.3	0	95.5	65.3	94.1	70.4	0	80	73.4	0	0	00	0	94.1
Trucks	10	103	0	113	0	96	35	131	29	0	9	38	0	0	0	0	282
% Trucks	27.8	4.4	0	4.7	0	4.5	34.7	5.9	29.6	0	20	26.6	0	0	0	0	5.9

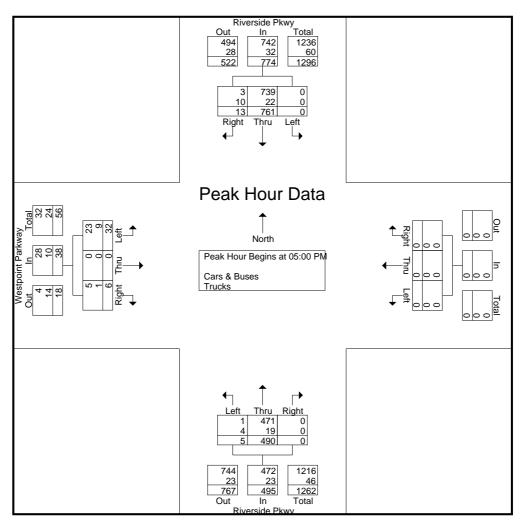

2160 Kingston Court, Suite 'O' Marietta, GA 30067

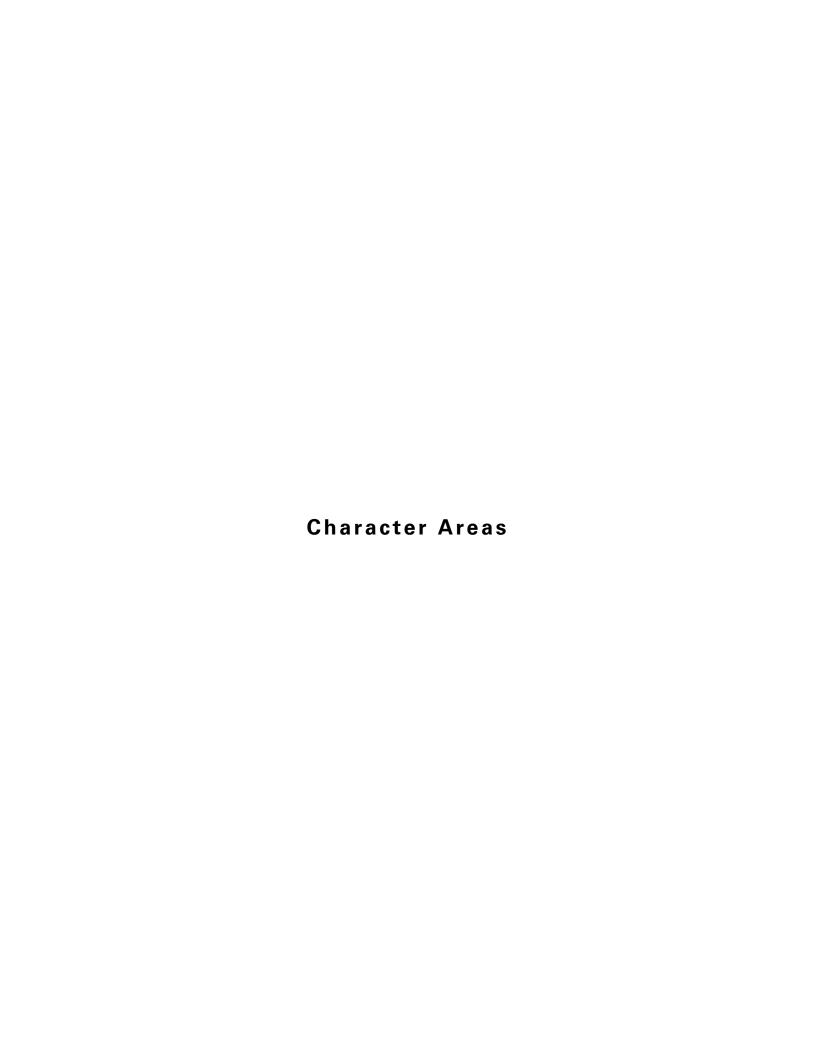
TMC Data Riverside Pkwy @ Westpoint Parkway 7-9 am | 4-6 pm

Site Code : 20240045 Start Date : 02-06-2024

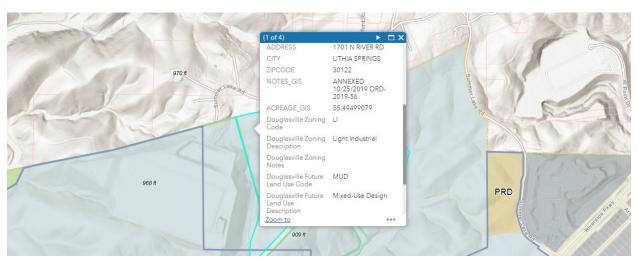
File Name: 20240045

		Riversi	de Pkw	у		Riversi	de Pkw	у	W	estpoir	nt Parkv	vay					
		North	bound			South	bound			East	bound	-		West	bound		
Start Time	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Int. Total
Peak Hour An	alysis F	rom 07	7:00 AM	to 08:4	5 AM -	Peak 1	of 1										
Peak Hour for	Entire	Interse	ction Be	egins at	07:00 A	M											
07:00 AM	6	242	0	248	0	90	6	96	1	0	0	1	0	0	0	0	345
07:15 AM	0	234	0	234	0	101	10	111	5	0	1	6	0	0	0	0	351
07:30 AM	4	233	0	237	0	106	10	116	7	0	1	8	0	0	0	0	361
07:45 AM	3	215	0	218	0	93	5	98	2	0	4	6	0	0	0	0	322
Total Volume	13	924	0	937	0	390	31	421	15	0	6	21	0	0	0	0	1379
% App. Total	1.4	98.6	0		0	92.6	7.4		71.4	0	28.6		0	0	0		
PHF	.542	.955	.000	.945	.000	.920	.775	.907	.536	.000	.375	.656	.000	.000	.000	.000	.955
Cars & Buses	12	884	0	896	0	358	29	387	6	0	3	9	0	0	0	0	1292
% Cars & Buses	92.3	95.7	0	95.6	0	91.8	93.5	91.9	40.0	0	50.0	42.9	0	0	0	0	93.7
Trucks	1	40	0	41	0	32	2	34	9	0	3	12	0	0	0	0	87
% Trucks	7.7	4.3	0	4.4	0	8.2	6.5	8.1	60.0	0	50.0	57.1	0	0	0	0	6.3

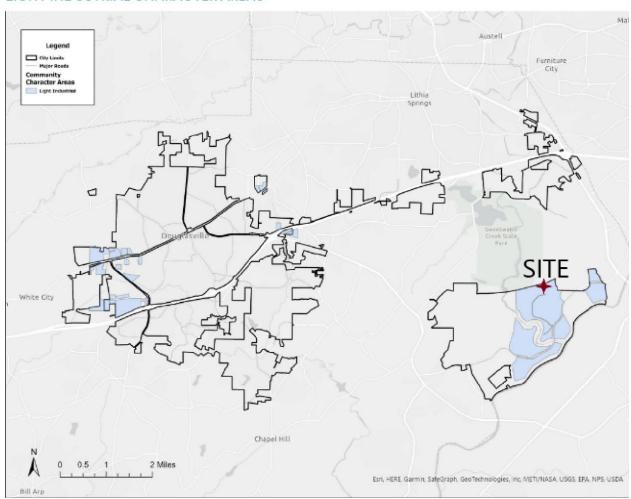

2160 Kingston Court, Suite 'O' Marietta, GA 30067


TMC Data Riverside Pkwy @ Westpoint Parkway 7-9 am | 4-6 pm

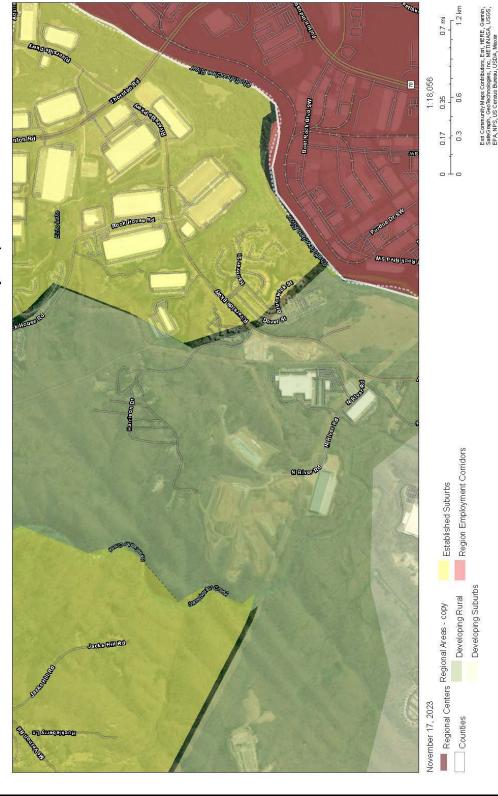
Site Code : 20240045 Start Date : 02-06-2024


File Name: 20240045

		Riversio	de Pkw	у		Riversi	de Pkw	у	W	estpoir	nt Parkv	vay					
		North	bound			South	bound			East	bound	-		West	bound		
Start Time	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Int. Total
Peak Hour An	alysis F	rom 04	:00 PM	to 05:4	5 PM -	Peak 1	of 1										
Peak Hour for	Entire	Intersed	ction Be	egins at	05:00 F	M											
05:00 PM	3	131	0	134	0	205	3	208	9	0	4	13	0	0	0	0	355
05:15 PM	0	122	0	122	0	174	3	177	6	0	1	7	0	0	0	0	306
05:30 PM	1	130	0	131	0	210	6	216	11	0	1	12	0	0	0	0	359
05:45 PM	1	107	0	108	0	172	1	173	6	0	0	6	0	0	0	0	287
Total Volume	5	490	0	495	0	761	13	774	32	0	6	38	0	0	0	0	1307
% App. Total	1	99	0		0	98.3	1.7		84.2	0	15.8		0	0	0		
PHF	.417	.935	.000	.924	.000	.906	.542	.896	.727	.000	.375	.731	.000	.000	.000	.000	.910
Cars & Buses	1	471	0	472	0	739	3	742	23	0	5	28	0	0	0	0	1242
% Cars & Buses	20.0	96.1	0	95.4	0	97.1	23.1	95.9	71.9	0	83.3	73.7	0	0	0	0	95.0
Trucks	4	19	0	23	0	22	10	32	9	0	1	10	0	0	0	0	65
% Trucks	80.0	3.9	0	4.6	0	2.9	76.9	4.1	28.1	0	16.7	26.3	0	0	0	0	5.0



City of Douglasville Zoning Information



City of Douglasville's Light Industrial Character Area Map

LIGHT INDUSTRIAL CHARACTER AREAS

ARC's Growth Policy Map

2021 ARC Unified Growth Policy Map

GRTA Letter of Understanding

LETTER OF UNDERSTANDING

February 6, 2024

Chip Scaglione DC BLOX 1040 Crown Pointe Parkway, Suite-560 Atlanta, Georgia 30338

RE: DC BLOX - ATL West Data Center (DRI#: 4112)

Dear Chip Scaglione:

The purpose of this Letter of Understanding is to document the discussions during the Methodology Meeting held virtually on January 29, 2024, regarding **DC BLOX - ATL West Data Center DRI#: 4112** Development of Regional Impact (DRI). The *GRTA DRI Review Procedures*, as well as the inputs and parameters documented in this Letter of Understanding and the revised Methodology Meeting Packet (sent on January 30,2024), shall be adhered to in preparing the GRTA required Transportation Study.

PROJECT OVERVIEW

- The proposed site is located at 1701 N River Rd., Lithia Springs, GA 30122. The development is located on North River Road in Douglasville. In general, the site is located to the south of I-20 and west of I-285. Latitude: 33° 44′ 03" N, Longitude: 84° 36′ 55" W.
- The proposed development includes two data center buildings (80MW with 498,315 SF and 40MW with 263,537 SF respectively) for a combined total of 761,852 SF.
- The projected build-out is one phase to be completed by 2026.
- The proposed development includes (3) site access along North River Rd. (Full Access), North River Rd. at cul-de-sac (Full Access), and Summer Lake Rd. (Emergency-Only Access).
- The DRI trigger for this development is a Land Disturbance Permit (LDP).
- The vehicular trip generation is estimated to be 754 net daily trips based on the *ITE Trip Generation Manual* 11th edition.
- The applicant is applying for approval under GRTA's expedited Traffic Impact Study review process.

STUDY NETWORK

- 1. Riverside Parkway @ North River Road
- 2. Riverside Parkway @ Summer Lake Road
- 3. Riverside Parkway @ Westpoint Parkway

METHODOLOGY MEETING PACKET INPUTS & PARAMETERS

- The Site Plan shall meet all the applicable requirements in Section 7.1 of the GRTA DRI Review Procedures.
- All Study Network intersections shall be analyzed during the <u>AM and PM peak hours</u> for (1) existing conditions,
 (2) future "no-build" conditions, and (3) future "build" conditions as specified in the *GRTA DRI Review Procedures*.
- This DRI shall be modeled and reviewed in one phase to be completed by 2026.

- The Level of Service (LOS) standard for all analysis shall be LOS D unless specified otherwise in Section 3.2.2.1. For example, a LOS E standard is allowed if the existing LOS for the intersection or approach is a LOS F.
- Default values should not be assumed in the traffic modeling. Existing conditions shall be taken into account as required in Section 3.2.2.
- The trip generation calculations in the revised Methodology Meeting Packet shall be used in the Transportation Study. Mixed-use and pass-by reductions <u>are not</u> allowed for this site. Pass-by reductions shall not exceed 15% of a roadway's traffic volume standard established in Appendix 7.2.
- The trip assignment approach in the revised Methodology Meeting Packet shall be utilized for all Study Network intersection movements.
- The applicant shall research TIP, STIP, RTP and GDOT's construction work program, as well as any local
 government and transit operator plans (SPLOST, CIP, etc.), to determine the open date, sponsor, cost of the
 project, funding source(s), for future roadway projects in the project vicinity. Programmed transportation projects
 anticipated to open on or before the Build Out year of the DRI Project shall be modeled as completed in the
 No-Build and Build conditions unless approved otherwise.
- A 3% annual traffic Background Growth Rate shall be used for all roadways.
- Capacity analysis shall be based on turning movement counts collected not more than 12-months prior to the
 date of the actual DRI submittal to GRTA, unless specified otherwise. As specified in Section 2.3, turning
 movement counts shall be collected while local schools are in session, on a Tuesday, Wednesday or Thursday
 (unless approved otherwise) and not during holiday periods (weeks of July 4th, Thanksgiving and +/- 5 days of
 Christmas).
- If the GRTA DRI Review Procedures requires an Enhanced Focus Area for Heavy Vehicles or an Enhanced Focus Area for Dense Urban Environments, the Transportation Study shall incorporate the inputs and parameters agreed to at the Methodology Meeting and documented in the revised Methodology Meeting Packet. These inputs may include a Heavy Vehicle modeling percentages, a Heavy Vehicle route map, a pedestrian crosswalk delay adjustment and a bus blockage adjustment factor.

ADDITIONAL REQUIREMENTS

All applicable requirements of the *GRTA DRI Review Procedures* must be met for the Transportation Study to be considered complete. The *GRTA DRI Review Procedures* are located on GRTA's DRI website: https://www.srta.ga.gov/programs-projects/dev-of-regional-impact/ Contact GRTA staff if you have any questions on these requirements.

The Transportation Study shall also include as attachments the native LOS modeling file (i.e., Synchro modeling files) as well as the modeling reports (PDFs) for all Study Network intersections for the Existing, No-Build and Build conditions for all phases. The PDF reports shall be numbered (in page headers) and organized in order according to the Study Network numbering sequence in this Letter of Understanding. The reports shall also be organized in the following sequence: Existing condition AM, Existing condition PM, No-build condition AM, No-Build condition PM. If improvements are modeled, those PDFs shall be labeled as such and follow the appropriate condition's applicable peak period.

The Transportation Study appendices shall also include all turning movement count data, regardless of if using historic data or newly collected turning movement counts.

When documenting any Queue Length impacts required in Section 3.2.3.6, the TIS Executive Summary shall also note any individual *movements* not meeting the LOS standard where the DRI Project adds trips in the Build condition and exceeds available storage capacity for that movement.

When identifying mitigations in the existing, no-build and build conditions, the mitigations identified in preceding conditions shall not be modeled as complete when conducting the LOS analysis. The same mitigation may still be proposed as mitigation in the subsequent condition, but it shall not be included as completed in the default analysis.

For example, a turn lane may be identified as a needed improvement in the no-build condition. The turn lane should not be modeled as completed in the build condition. The turn lane should only be modeled as complete in the no-build with improvements condition and the build with improvements condition.

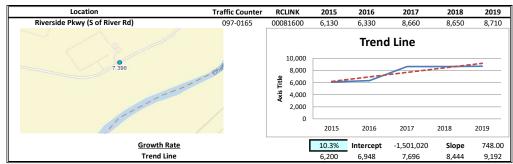
DRI REVIEW PACKAGE SUBMITTAL

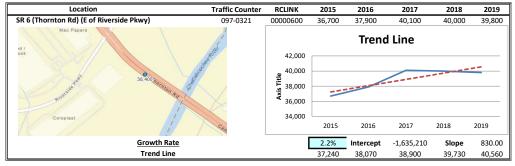
GRTA will begin reviewing the DRI once the DRI Review Package is submitted and deemed complete. The DRI Review Package includes: the permitting Local Government inputting both Department of Community Affairs (DCA) forms into the DCA DRI website; and the Traffic Engineer submittal of the GRTA Transportation Study (including LOS appendices, traffic count data and any other required attachments) and Site Plan to GRTA staff and ALL stakeholders included in the CC list of this Letter of Understanding.

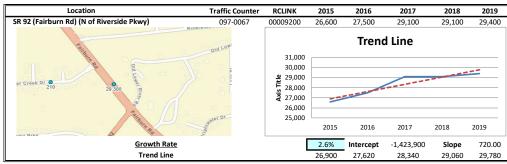
All DRI Review Packages shall be submitted electronically via email to all stakeholders in the CC list of the Letter of Understanding. If the DRI Review Package total file size is greater than 10 MB, the DRI Review Package shall be submitted via email with a FTP link provided for downloading the files.

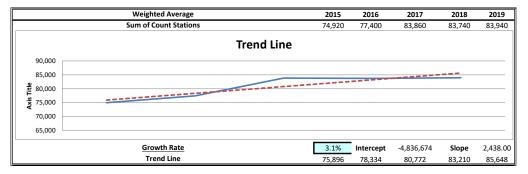
Please contact me if you have any questions about the Letter of Understanding or the GRTA DRI Review Procedures.

Sincerely,


Brittany Williams Program Manager


Cc:


Brittany Williams, GRTA/SRTA
Donald Shockey, ARC
Jonathan Philipsborn, ARC
Reginald James, ARC
Chip Scaglione, DC BLOX, Developer
Abdul Amer, A&R Engineering
Victor Garcia, A&R Engineering
Naser Omar, A&R Engineering
Dillon Callaham, Thomas & Hutton
Brad Sanderson, Thomas & Hutton
Chirag Date, Modern Mobility Partners


Marissa Jackson, Douglas County Bruce Mercer, Douglas County Marcus Thompson, Douglas County Philip Shafer, Douglas County Karla Poshedly, Douglas County Amy Diaz, Cobb County Ligia Florim, Cobb County Donald Wells, Cobb County Megan R. Wilson, GDOT District 7 Landon Perry, GDOT District 7 Linear Regression of Daily Traffic

	Trend	Line			5,556	5,696	5,836	5,976	6,116
	Growth	Rate			2.4%	Intercept	-276,544	Slope	140.00
-Rout-House-Rd	13,200	Riveradezhañ	Male	6,200 6,000 9,5,800 5,600 5,400 5,200 5,000	2015	2016	2017	2018	2019
	rside Rd)	The last	097-0167	00081600	5,490	5,670 Trend	6,000 Line	5,990	6,030
Location Riverside Pkwy (N of Rive	!.d D.d\		Traffic Counter	RCLINK	2015	2016	2017	2018	2019
Weighted Average	3.1%	0.80	Sum of Count	Stations =	74,920	77,400	83,860	83,740	83,940
R 92 (Fairburn Rd) (N of Rivers	2.6%	0.86	097-0067	00009200	26,600	27,500	29,100	29,100	29,400
R 6 (Thornton Rd) (E of Riversia	2.2%	0.74	097-0321	00000600	36,700	37,900	40,100	40,000	39,800
iverside Pkwy (S of River Rd)	10.3%	0.78	097-0165	00081600	6,130	6,330	8,660	8,650	8,710
Location iverside Pkwy (N of Riverside F	Growth Rate 2.4%	R Squared 0.83	Station ID 097-0167	Route 00081600	2015 5,490	2016 5,670	2017 6,000	2018 5,990	2019 6,030

Fact Sheets for Planned and Programmed Improvements

Interoffice Memo Office of Design Policy & Support

DATE:

11/1/2018

FILE:

P.I.# 0012877

Douglas County / GDOT District 7 - Metro Atlanta

Greenway Trail from Boundary Waters Park to Sweetwater Creek

Multi-use Trail

FROM:

Brent Story, State Design Policy Engineer

TO:

SEE DISTRIBUTION

SUBJECT:

APPROVED CONCEPT REPORT

Attached is the approved Concept Report for the above subject project.

Attachment

Distribution:

Hiral Patel, Director of Engineering

Joe Carpenter, Director of P3

Albert Shelby, Director of Program Delivery

Darryl VanMeter, Assistant Director of P3/State Innovative Delivery Administrator

Kim Nesbitt, Program Delivery Administrator

Bobby Hilliard, Program Control Administrator

Paul Tanner, State Transportation Planning Administrator

Eric Duff, State Environmental Administrator

Bill DuVall, State Bridge Engineer

Andrew Heath, State Traffic Engineer

Angela Robinson, Financial Management Administrator

Erik Rohde, State Project Review Engineer

Monica Flournoy, State Materials Engineer

Patrick Allen, State Utilities Engineer

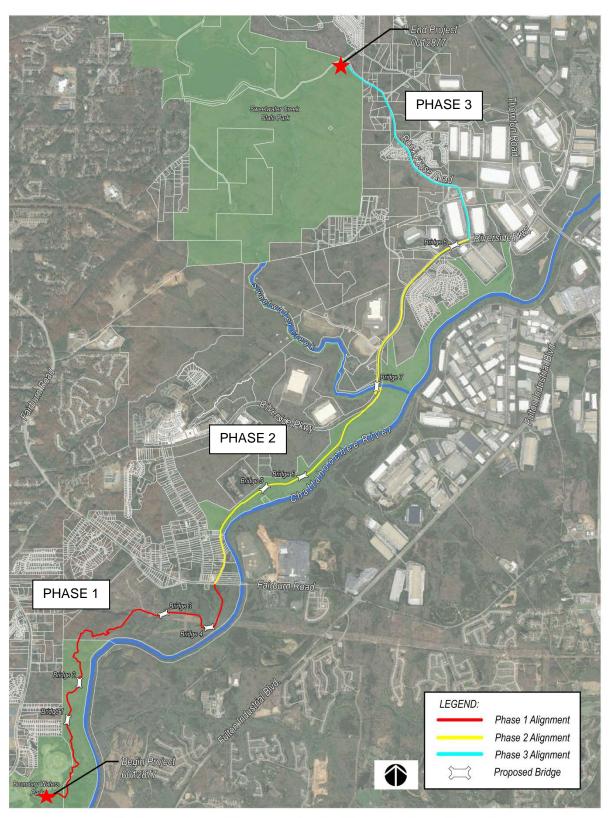
Benny Walden, Statewide Location Bureau Chief

Kathy Zahul, District Engineer

Paul DeNard, District Preconstruction Engineer

Shun Pringle, District Utilities Manager

Olusola Adekonojo, Project Manager


BOARD MEMBER - 13th Congressional District

DEPARTMENT OF TRANSPORTATION

STATE OF GEORGIA LIMITED SCOPE PROJECT CONCEPT REPORT

Project Type: Bike/Pedestrian	P.I. Number: 0012877
GDOT District: 7	County: Douglas County
Federal Route Number: N/A Project Number:	State Route Number: N/A N/A
	A STATE OF THE STA
A new alignment for an approximate 11 mile Shared-	Use Path starting at Boundary Waters Park, Dougle
County, GA, extending up to Sweetwater Creek Stat	e Park, Douglas County, GA. The Shared-Use Pa
will be 12' wide and will be constructed primarily of	concrete and will utilize boardwarks and pedestric
bridges to minimize impacts to environmental resource	es where heeded. This II fille segment is part of
95 mile trail system associated with the Chattahooche	
** Updated report on 8-21-2018 and 1	10-10-2018 to address review comments
Submitted for approyal:	
11.500	6/18/18
Consultant Designer & Firm	Date
Wignel Valentin	6/18/18
Douglas County DOT	# Date 7/10/18
Douglas County DOT Kumberly W. Madd	.,,,,,,,
State Program Delivery Engineer	Date ,
Aluche but A. (a)	PBE 6/20/18
GDOT Project Manager	Date
The state of the s	
나는 그를 가장하는 하는데 그는 것이 하는데 되었다. 그렇게 하는 그들은 그렇게 되었다. 그는 그들은 그를 하는데 그를 하는데 하는데 그렇게 하는데 하는데 하는데 하는데 그를 하는데 그렇게 하는데	endations on file
Recommendation for approval:	
*Joseph Cavins/KLP	7-24-2018
v District Engineer	Date
	7-13-2018
*Eric Duff/KLP State Environmental Administrator	Date
	8-8-2018
*Bill DuVall/KLP State Bridge Engineer	Date
	7 04 0040
*Erik Rohde/KLP	7-24-2018
State Project Review Engineer	
*Andrew Pearson/KLP	7-25-2018
State Traffic Engineer	
MPO Area: This project is consistent with the M (RTP)/Long Range Transportation Plan (LRTP).	IPO adopted Regional Transportation Plan
	pals outlined in the Statewide Transportation Plan
0 0 1 1	7-16-18
State Transportation Planning Administrator	Date
orace (temperature)	
Approval:	
Concur: This Portal	81-25-18
GDOT Director of Engineering	Date
Approve: \AAA AAA AAAA AAAA AAAAAAAAAAAAAAAAAA	01/11 11/10
GDOT Chief Engineer	Nate
(91 1C) C. (1000 C. (1000 Delet)	Dulo

PROJECT LOCATION

Chattahoochee Hill Country Trail - Phase 1, 2 and Phase 3

Scale = 1 : 1,000

Limited Scope Concept Report - Page 3 P.I. Number: 0012877 County: Douglas

PLANNING & BACKGROUND DATA

Project Justification Statement: This is a project for an approximately 11 mile trail section to establish a substantial link in the Chattahoochee Hill Country for an extention of the Regional Greenway Trail System. Completed in 2004, the Chattahoochee Hill Country Regional Greenway Trail Master Plan includes portions of four counties (Carroll, Coweta, Douglas, and Fulton) and the City of Chattahoochee Hills. A 98-mile trail is planned to interconnect all parts of the Chattahoochee Hill Country. Implementing this plan is a long-term project, with the first trail segment now open in the Boundary Waters Park in Douglas County: 3/4 of a mile of 100% accessible trail, 12-feet wide, concrete construction, that is suitable for walkers, runners, joggers, and cyclists. The trailhead is located behind the Boundary Waters Aquatic Center in the Boundary Waters Park located in Douglas County, Georgia.

Boundary Waters Park contains 9 miles of unimproved trails, 2 soccer fields, 8 baseball fields, a children's playground, stocked pond, and indoor aquatic center and is the southern termini of the project.

The northern termini is Sweetwater Creek State Park, considered one of the most popular parks in the State of Georgia with over 800,000 visitors each year. The 2,549-acre park includes the 215 acre George Sparks Reservoir, Sweetwater Creek, hiking trails, the ruins of a pre-Civil War textile mill, the New Manchester Manufacturing Company Mill and visitor's center with a museum.

This project, P.I.# 0012877, is a proposed 11-mile link between Sweetwater Creek State Park at the northern termini and Boundary Waters Park at the southern project termini connecting to the existing .75 mile trail generally following the Chattahoochee River, Riverside Parkway and Rockhouse Road.

This hard surface shared-use path will provide pedestrian and bicyclist access from Boundary Waters Park to Sweetwater Creek State Park in Douglas County, that will follow the Chattahoochee River, Riverside Parkway, and Rock House Road.

Existing conditions: The guiding regulation used in determining the concept alignment for this project is the Metropolitan River Protection Act of Georgia, or MRPA. The Chattahoochee River is the largest river in metro Atlanta and one of the region's most valuable resources, serving as the primary source of drinking water for millions of residents. In 1973, the Georgia General Assembly adopted the Metropolitan River Protection Act (MRPA), which protected a 48-mile stretch of the Chattahoochee River between Buford Dam and Peachtree Creek by creating a 2,000 foot buffer along both banks of the river and its impoundments. The Act was amended in 1998 to extend the Corridor an additional 36 miles to the downstream limits of Fulton and Douglas counties.

Metropolitan River Protection Act Need and Purpose/General Guidelines:

MRPA is designed to protect the water quality and environs of the Chattahoochee River for:

- The region's primary source of drinking water.
- A major recreation area that includes the Chattahoochee River National Recreation Area and the nation's first National Water Trail.
- One of the southern-most trout streams in the United States (and one of the very few located in a major metropolitan area).
- Chattahoochee Corridor Plan.
- MRPA directed the Atlanta Regional Council, or ARC, to develop and adopt a plan to protect the Chattahoochee River Corridor and to review development proposals to ensure they are consistent with the plan. This requirement was met in 1973 with the adoption of the Chattahoochee Corridor Plan, and amended in 1998 by the adoption of the Chattahoochee River from Peachtree Creek to West Point lake Corridor Plan Study.

Under MRPA, land-disturbing activity in the Chattahoochee corridor must comply with the adopted plan to be legal. Local governments in the corridor are required to:

- Issue permits based on ARC findings.
- Monitor land-disturbing activity in the corridor.
- Ensure that land-disturbing activity in the corridor complies with the plan.
- Chattahoochee Corridor Plan Goals.

Limited Scope Concept Report - Page 4 County: Douglas

- Preservation and protection of water quality as a principal objective.
- Protection of recreational values. These values include scenic views, historic and other unique areas, and controlled public access and use.

P.I. Number: 0012877

- Protection of private property rights of landowners.
- Prevention of activities that contribute to floods and flood damage.
- Control of erosion and siltation.
- Control of intensity of development.
- Location and design of land uses in such a way as to minimize the adverse impact of urban development on the Chattahoochee River (the "River") and flood plains.
- Chattahoochee Corridor Plan Summary.
- The plan establishes three sets of development standards that must be met in order to reduce the impact of development on the river.

Vulnerability Standards:

- Based on the characteristics of the land, all land in the corridor fits one of six vulnerability categories.
- For each vulnerability category, there is a maximum percentage of allowable land disturbance and impervious surface.
- Land disturbance includes any activity that disturbs the land or existing vegetation.
- Impervious surface includes any paved, hardened or structural surface, regardless of material, and includes buildings, driveways, decks, patios, pools, etc.

Buffer Zone Standards:

- 50-foot undisturbed vegetative buffer along the river and its impoundments
- 35-foot undisturbed vegetative buffer along flowing streams in the corridor
- 150-foot impervious surface setback along the river and its impoundments

Floodplain Standards:

- Balancing fill with an equal volume of cut in the river's 100-year floodplain
- No blocking of flood flows
- 35-foot height limit above existing grade for all structures except bridges in the river's 500-year floodplain

MRPA Reviews:

 All land-disturbing activity in the corridor must be reviewed, approved and certified for consistency with Corridor Plan standards. ARC has adopted MRPA Rules and Regulations that explain the procedures and requirements for corridor reviews.

Project Description: Phase 1 of the project proposes a shared-use path which alignment is through property associated with Boundary Waters Park and land owned by Sweetwater Creek State Park. The southern section of the alignment will branch from an existing concrete shared-use trail in Boundary Waters Park. The alignment will follow a pre-existing earthen trail through wooded rolling terrain and at some points run alongside the Chattahoochee River. Some portions of the alignment will also follow along existing utility easements terminating phase 1 at Fairburn Road. Heading in a northernly direction, Phase 2 of the project will follow the western Right of Way of Riverside Drive past an existing Sand Mining Operation running north easterly adjacent to the Chattahoochee River and then along Riverside Parkway across Sweetwater Creek with a new pedestrian/bike bridge ending phase 2 at Rock House Road. Phase 3 of the project will start at the intersection of Rockhouse Road and Riverside Parkway and will continue up Rockhouse Road along the western side of the Road's Right of Way with the logical termini at the intersection of Old Factory Shoals Road and Factory Shoals Road within Sweetwater Creek State Park. Overall, the topography is varied with a mix of Piedmont Rolling Hills and flat flood plains. The proposed alignment tries to follow existing trails, road beds, easements with careful attention to avoid or minimize impacts to environmental resources. mostly wooded, rolling hills and follows parallel with the river where possible.

Other projects in the area:

- PI 721770 SR 166 FM Old Lower River Road/Douglas to SR 70/Fulton
- PI 0015072 CR 816/RIVERSIDE PKWY @ SWEETWATER CREEK IN DOUGLASVILLE- Bridge Rehabilitation Project

Limited Scope Concept Report - Page 5 County: Douglas

Description of the other projects in the area:

PI 721770 begins in Douglas County at Mile Post 19.11 on SR 166 east of the intersection with Old Lower River Road and continues to the Douglas/Fulton County line at Mile Post 20.80. The project then crosses the Chattahoochee River into Fulton County at Mile Post 0.00 and ends just east of the intersection of SR 166 and Fulton Industrial Boulevard at Mile Post 1.37. The total project length is 3.06 miles. The proposed project would widen and reconstruct SR 166 from Old Lower River Road in Douglas County to SR 70 in Fulton County. Proposed Typical Section: Four 12 foot travel lanes in each direction with a 24 foot raised median and 10 foot (6.5 foot payed, 3.5 foot grassed) rural shoulders. Proposed Bridge Configuration: The existing 48 foot bridge will be widened 48 feet to accommodate four 12 foot travel lanes and a 24 foot raised median.

P.I. Number: 0012877

PI 0015072 will be to rehabilitate the existing 280 ft. long bridge at Sweetwater Creek. The work will include a detailed inspection including the joints, bearings, beams, and substructure. Plans will be prepared for strengthening the intermediate concrete bent caps by encasing with cast-in-place reinforced concrete. Plans and special provisions will be prepared for the bent repair, joint replacement, steel beam painting, deck polymer overlay, bearing replacement, and scour repair. Construction phase services will be limited to shop drawing review and responding to contractor requests for information. Environmental work will include ecological services, USACE permit preparation, cultural resource services, air and noise assessments, and NEPA documentation.

MPO: Atlanta TMA			TIP#	: DO-298	
Congressional Distr	ict(s): 13				
Federal Oversight:	⊠Exempt	□State F	unded	□Other	
Functional Classific	ation (Mainline	e): Not Applic	cable		
Complete Streets - E Warrants met:	Bicycle, Pedes □None	trian, and/or ⊠Bicycle			_
Pavement Evaluation			ort Doguirod	2. ⊠No	□Voo
Preliminary Paveme		, ,	•	? ⊠No	□Yes
Preliminary Paveme	nt Type Selecti	ion Report Re	equired?	⊠No	□Yes
Feasible Pavement	Alternatives:	\Box HMA	⊠PC	С	□HMA & PCC

Existing Intersection Analysis

Intersection						
Int Delay, s/veh	1.1					
		E85	ND	NDT	ODT	000
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	A		ሻ	↑	↑	7
Traffic Vol, veh/h	37	25	18	747	346	71
Future Vol, veh/h	37	25	18	747	346	71
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	Yield	-	None	-	Yield
Storage Length	0	-	255	-	-	270
Veh in Median Storag	e, # 0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	93	93	93	93	93	93
Heavy Vehicles, %	16	20	11	9	9	6
Mvmt Flow	40	27	19	803	372	76
	Minor2		Major1		/lajor2	
Conflicting Flow All	1213	372	372	0	-	0
Stage 1	372	-	-	-	-	-
Stage 2	841	-	-	-	-	-
Critical Hdwy	6.56	6.4	4.21	-	-	-
Critical Hdwy Stg 1	5.56	-	-	-	-	-
Critical Hdwy Stg 2	5.56	_	-	-	-	-
Follow-up Hdwy	3.644	3.48	2.299	-	-	-
Pot Cap-1 Maneuver	188	636	1139	-	-	-
Stage 1	667	-	-	-	-	-
Stage 2	400	_	_	_	_	_
Platoon blocked, %				_	_	_
Mov Cap-1 Maneuver	185	636	1139	_	_	_
Mov Cap-1 Maneuver		500	1100	_	_	_
Stage 1	656	_	_	_	_	_
	400	-	-	-	-	-
Stage 2	400	-	-	_	-	-
Approach	EB		NB		SB	
HCM Control Delay, s	19.8		0.2		0	
HCM LOS	С					
Minor Lane/Major Mvr	nt	NBL	NBT	EBLn1	SBT	SBR
Capacity (veh/h)		1139	-	• • •	-	-
HCM Lane V/C Ratio		0.017	-	0.215	-	-
HCM Control Delay (s	5)	8.2	-	19.8	-	-
HCM Lane LOS		Α	-	С	-	-
HCM 95th %tile Q(veh	1)	0.1	-	0.8	-	-
-1	,					

A&R Engineering 23-198 DC BLOX - ATL WEST Data Center on N. River Road (DRI 4112) - Douglasville, GA Synchro 11 Report Page 1

Intersection						
Int Delay, s/veh	2					
		E25	No	NET	057	000
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	N/			ન	₽	
Traffic Vol, veh/h	54	32	13	771	385	30
Future Vol, veh/h	54	32	13	771	385	30
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storag	e, # 0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	2	2	8	9	9	3
Mvmt Flow	59	35	14	838	418	33
N.A /N.A.	N4: 0					
Major/Minor	Minor2		Major1		//ajor2	
Conflicting Flow All	1301	435	451	0	-	0
Stage 1	435	-	-	-	-	-
Stage 2	866	-	-	-	-	-
Critical Hdwy	6.42	6.22	4.18	-	-	-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
Follow-up Hdwy	3.518	3.318	2.272	-	-	-
Pot Cap-1 Maneuver	178	621	1078	-	-	-
Stage 1	653	-	-	-	-	-
Stage 2	412	-	-	-	-	-
Platoon blocked, %				-	_	-
Mov Cap-1 Maneuver	174	621	1078	-	-	_
Mov Cap-2 Maneuver		-	-	_	_	_
Stage 1	637	_	_	_	_	_
Stage 2	412	_	_	_	_	<u>_</u>
Olage Z	712					
Approach	EB		NB		SB	
HCM Control Delay, s	29.6		0.1		0	
HCM LOS	D					
						000
NA' - 1 /NA - ' - NA		NIDI	NIDT			
Minor Lane/Major Mvr	nt	NBL		EBLn1	SBT	SBR
Capacity (veh/h)	nt	1078	-	238	SBT -	- SBK
Capacity (veh/h) HCM Lane V/C Ratio		1078 0.013	-	238 0.393	-	-
Capacity (veh/h) HCM Lane V/C Ratio HCM Control Delay (s		1078 0.013 8.4	- - 0	238 0.393 29.6	-	-
Capacity (veh/h) HCM Lane V/C Ratio	·)	1078 0.013	-	238 0.393	-	-

A&R Engineering 23-198 DC BLOX - ATL WEST Data Center on N. River Road (DRI 4112) - Douglasville, GA Synchro 11 Report Page 2

Lane Group EBL EBR NBL NBT SBT SBR Lane Configurations 1
Traffic Volume (vph) 15 6 13 924 390 31 Future Volume (vph) 15 6 13 924 390 31 Lane Group Flow (vph) 16 6 14 973 411 33 Turn Type Prot Perm Perm NA NA Perm
Traffic Volume (vph) 15 6 13 924 390 31 Future Volume (vph) 15 6 13 924 390 31 Lane Group Flow (vph) 16 6 14 973 411 33 Turn Type Prot Perm Perm NA NA Perm
Lane Group Flow (vph) 16 6 14 973 411 33 Turn Type Prot Perm Perm NA NA Perm
Turn Type Prot Perm Perm NA NA Perm
Protected Phases 3 6 2
1 1016-016-01 1103-03 0 2
Permitted Phases 3 6 2
Detector Phase 3 3 6 6 2 2
Switch Phase
Minimum Initial (s) 5.0 5.0 15.0 15.0 15.0 15.0
Minimum Split (s) 26.5 26.5 28.5 28.5 28.5 28.5
Total Split (s) 26.5 26.5 53.5 53.5 53.5
Total Split (%) 33.1% 33.1% 66.9% 66.9% 66.9% 66.9%
Yellow Time (s) 3.5 3.5 3.5 3.5 3.5
All-Red Time (s) 2.0 2.0 2.0 2.0 2.0 2.0
Lost Time Adjust (s) 0.0 0.0 0.0 0.0 0.0 0.0
Total Lost Time (s) 5.5 5.5 5.5 5.5 5.5
Lead/Lag
Lead-Lag Optimize?
Recall Mode None None Min Min Min Min
v/c Ratio 0.13 0.05 0.02 0.62 0.26 0.02
Control Delay 33.4 21.0 2.1 5.4 2.2 1.0
Queue Delay 0.0 0.0 0.0 0.0 0.0 0.0
Total Delay 33.4 21.0 2.1 5.4 2.2 1.0
Queue Length 50th (ft) 5 0 0 0 0 0
Queue Length 95th (ft) 25 11 5 358 82 5
Internal Link Dist (ft) 535 899 1249
Turn Bay Length (ft) 140 315 280
Base Capacity (vph) 411 396 825 1568 1568 1361
Starvation Cap Reductn 0 0 0 0 0 0
Spillback Cap Reductn 0 0 0 0 0
Storage Cap Reductn 0 0 0 0 0 0
Reduced v/c Ratio 0.04 0.02 0.02 0.62 0.26 0.02
Intersection Summary

Cycle Length: 80

Actuated Cycle Length: 61.5

Natural Cycle: 80

Control Type: Actuated-Uncoordinated

Synchro 11 Report A&R Engineering 23-198 DC BLOX - ATL WEST Data Center on N. River Road (DRI 4112) - Douglasville, GA Page 3

	۶	*	1	†	↓	4	
Movement	EBL	EBR	NBL	NBT	SBT	SBR	
Lane Configurations	*	7	*	A	†	7	
Traffic Volume (veh/h)	15	6	13	924	390	31	
Future Volume (veh/h)	15	6	13	924	390	31	
Initial Q (Qb), veh	0	0	0	0	0	0	
Ped-Bike Adj(A_pbT)	1.00	1.00	1.00	•	•	1.00	
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	
Work Zone On Approach	No	1.00	1.00	No	No	1.00	
Adj Sat Flow, veh/h/ln	1011	1159	1781	1767	1767	1796	
Adj Flow Rate, veh/h	16	0	14	973	411	0	
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	
Percent Heavy Veh, %	60	50	8	9	9	7	
Cap, veh/h	19	30	769	1300	1300	'	
Arrive On Green	0.02	0.00	0.74	0.74	0.74	0.00	
Sat Flow, veh/h	963	982	928	1767	1767	1522	
•							
Grp Volume(v), veh/h	16	0	14	973	411	1500	
Grp Sat Flow(s),veh/h/ln	963	982	928	1767	1767	1522	
Q Serve(g_s), s	0.7	0.0	0.2	14.6	3.6	0.0	
Cycle Q Clear(g_c), s	0.7	0.0	3.8	14.6	3.6	0.0	
Prop In Lane	1.00	1.00	1.00	4000	1000	1.00	
Lane Grp Cap(c), veh/h	19		769	1300	1300		
V/C Ratio(X)	0.83		0.02	0.75	0.32		
Avail Cap(c_a), veh/h	448		1074	1881	1881		
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	
Upstream Filter(I)	1.00	0.00	1.00	1.00	1.00	0.00	
Uniform Delay (d), s/veh	22.0	0.0	2.7	3.5	2.0	0.0	
Incr Delay (d2), s/veh	55.5	0.0	0.0	1.9	0.3	0.0	
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	
%ile BackOfQ(50%),veh/ln	0.5	0.0	0.0	0.7	0.1	0.0	
Unsig. Movement Delay, s/veh							
LnGrp Delay(d),s/veh	77.6	0.0	2.7	5.4	2.3	0.0	
LnGrp LOS	Е		Α	Α	Α		
Approach Vol, veh/h	16			987	411		
Approach Delay, s/veh	77.6			5.4	2.3		
Approach LOS	Е			Α	Α		
Timer - Assigned Phs		2				6	8
Phs Duration (G+Y+Rc), s		38.7				38.7	6.4
Change Period (Y+Rc), s		5.5				5.5	5.5
Max Green Setting (Gmax), s		48.0				48.0	21.0
Max Q Clear Time (g_c+l1), s		5.6				16.6	2.7
Green Ext Time (p_c), s		5.3				16.6	0.0
Intersection Summary							
HCM 6th Ctrl Delay			5.3				
HCM 6th LOS			A				
			,,				
Notes							

A&R Engineering Synchro 11 Report 23-198 DC BLOX - ATL WEST Data Center on N. River Road (DRI 4112) - Douglasville, GA Page 4

Intersection						
Int Delay, s/veh	16.3					
		EDD	NDI	NDT	CDT	CDD
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	Y		Ť	†	†	7
Traffic Vol, veh/h	200	67	21	270	686	52
Future Vol, veh/h	200	67	21	270	686	52
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	Yield	-	None	-	Yield
Storage Length	0	-	255	-	-	270
Veh in Median Storage	e, # 0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	94	94	94	94	94	94
Heavy Vehicles, %	3	9	24	9	9	10
Mvmt Flow	213	71	22	287	730	55
	N4: 0				4 : 0	
	Minor2		Major1		//ajor2	
Conflicting Flow All	1061	730	730	0	-	0
Stage 1	730	-	-	-	-	-
Stage 2	331	-	-	-	-	-
Critical Hdwy	6.43	6.29	4.34	-	-	-
Critical Hdwy Stg 1	5.43	-	-	-	-	-
Critical Hdwy Stg 2	5.43	-	-	-	-	-
Follow-up Hdwy		3.381	2.416	-	-	-
Pot Cap-1 Maneuver	247	411	782	-	-	-
Stage 1	475	-	-	-	-	-
Stage 2	725	-	-	-	-	-
Platoon blocked, %				-	-	-
Mov Cap-1 Maneuver	240	411	782	_	-	-
Mov Cap-2 Maneuver	240	_	-	-	-	-
Stage 1	462	_	-	_	_	_
Stage 2	725	_	_	_	_	_
	. 20					
Approach	EB		NB		SB	
HCM Control Delay, s	78.4		0.7		0	
HCM LOS	F					
Minor Lane/Major Mvn	nt	NBL	NRT	EBLn1	SBT	SBR
	11(אמט
Capacity (veh/h)		782	-	299	-	-
HCM Cartes Delay (a)		0.029	-	0.95	-	-
HCM Control Delay (s)		9.7	-	78.4	-	-
HCM Lane LOS	,	A	-	F	-	-
HCM 95th %tile Q(veh)	0.1	-	9.4	-	-

Intersection						
Int Delay, s/veh	1.1					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	¥			4	₽	
Traffic Vol, veh/h	28	16	22	444	722	54
Future Vol, veh/h	28	16	22	444	722	54
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-		_	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage		_	_	0	0	-
Grade, %	0	_	_	0	0	_
Peak Hour Factor	93	93	93	93	93	93
Heavy Vehicles, %	2	2	2	9	9	2
Mvmt Flow	30	17	24	477	776	58
		- 11	L	- 111	. 10	- 00
	Minor2		Major1	N	//ajor2	
Conflicting Flow All	1330	805	834	0	-	0
Stage 1	805	-	-	-	-	-
Stage 2	525	-	-	-	-	-
Critical Hdwy	6.42	6.22	4.12	-	-	-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
Follow-up Hdwy	3.518	3.318	2.218	-	-	-
Pot Cap-1 Maneuver	171	382	799	-	-	-
Stage 1	440	-	-	-	-	-
Stage 2	593	-	-	-	-	-
Platoon blocked, %				-	-	_
Mov Cap-1 Maneuver	164	382	799	-	-	-
Mov Cap-2 Maneuver	164	-	-	_	_	_
Stage 1	422	_	_	_	_	_
Stage 2	593	<u>-</u>	<u>-</u>	<u>-</u>	_	_
Olago Z	555					
Approach	EB		NB		SB	
HCM Control Delay, s	27.5		0.5		0	
HCM LOS	D					
Minor Long/Major Myr	, +	NBL	NDT	EBLn1	SBT	SBR
	IL					אמט
Minor Lane/Major Mvm			-	207	-	-
Capacity (veh/h)		799				
Capacity (veh/h) HCM Lane V/C Ratio		0.03	-	0.229	-	-
Capacity (veh/h) HCM Lane V/C Ratio HCM Control Delay (s)		0.03 9.6	- 0	0.229 27.5	-	-
Capacity (veh/h) HCM Lane V/C Ratio		0.03	-	0.229		

	۶	•	1	†	ļ	1
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	7	7	7	↑	↑	7
Traffic Volume (vph)	32	6	5	490	761	13
Future Volume (vph)	32	6	5	490	761	13
Lane Group Flow (vph)	35	7	5	538	836	14
Turn Type	Prot	Perm	Perm	NA	NA	Perm
Protected Phases	3			6	2	
Permitted Phases		3	6			2
Detector Phase	3	3	6	6	2	2
Switch Phase						
Minimum Initial (s)	5.0	5.0	15.0	15.0	15.0	15.0
Minimum Split (s)	26.5	26.5	28.5	28.5	28.5	28.5
Total Split (s)	26.5	26.5	43.5	43.5	43.5	43.5
Total Split (%)	37.9%	37.9%	62.1%	62.1%	62.1%	62.1%
Yellow Time (s)	3.5	3.5	3.5	3.5	3.5	3.5
All-Red Time (s)	2.0	2.0	2.0	2.0	2.0	2.0
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	5.5	5.5	5.5	5.5	5.5	5.5
Lead/Lag	5.5	5.5	5.5	5.5	5.5	5.5
Lead-Lag Optimize?						
Recall Mode	None	None	Min	Min	Min	Min
			0.02			0.02
v/c Ratio	0.17	0.03		0.35	0.55	
Control Delay	24.7	14.8	3.2	3.4	5.4	1.8
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	24.7	14.8	3.2	3.4	5.4	1.8
Queue Length 50th (ft)	8	0	0	0	0	0
Queue Length 95th (ft)	32	9	3	129	282	4
Internal Link Dist (ft)	535			899	1249	
Turn Bay Length (ft)		140	315			280
Base Capacity (vph)	618	608	267	1495	1495	784
Starvation Cap Reductn	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0
Reduced v/c Ratio	0.06	0.01	0.02	0.36	0.56	0.02
Intersection Summary						
Cycle Length: 70						
Actuated Cycle Length: 50.4						
Natural Cycle: 70						
Control Type: Actuated-Unco	ordinated					
Control Type. Actuated-Unco	ordinated					
Splits and Phases: 3: Rive	erside Pkw	y & West	point Pkw	/y		
a		,		,		
▼ Ø2						
43.5 s						
₹						
1 Ø6						

	۶	*	4	†	↓	4	
Movement	EBL	EBR	NBL	NBT	SBT	SBR	
Lane Configurations	*	7	*	A	†	7	
Traffic Volume (veh/h)	32	6	5	490	761	13	
Future Volume (veh/h)	32	6	5	490	761	13	
Initial Q (Qb), veh	0	0	0	0	0	0	
Ped-Bike Adj(A_pbT)	1.00	1.00	1.00		•	1.00	
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	
Work Zone On Approach	No	1.00	1.00	No	No	1.00	
Adj Sat Flow, veh/h/ln	1485	1648	714	1767	1767	759	
Adj Flow Rate, veh/h	35	0	5	538	836	0	
Peak Hour Factor	0.91	0.91	0.91	0.91	0.91	0.91	
Percent Heavy Veh, %	28	17	80	9	9	77	
Cap, veh/h	58	17	284	1173	1173		
Arrive On Green	0.04	0.00	0.66	0.66	0.66	0.00	
Sat Flow, veh/h	1414	1397	251	1767	1767	643	
Grp Volume(v), veh/h	35	1207	5	538	836	643	
Grp Sat Flow(s),veh/h/ln	1414	1397	251	1767	1767	643	
Q Serve(g_s), s	0.9	0.0	0.5	5.5	11.2	0.0	
Cycle Q Clear(g_c), s	0.9	0.0	11.7	5.5	11.2	0.0	
Prop In Lane	1.00	1.00	1.00	4.470	4.470	1.00	
Lane Grp Cap(c), veh/h	58		284	1173	1173		
V/C Ratio(X)	0.61		0.02	0.46	0.71		
Avail Cap(c_a), veh/h	796		373	1800	1800		
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	
Upstream Filter(I)	1.00	0.00	1.00	1.00	1.00	0.00	
Uniform Delay (d), s/veh	17.6	0.0	7.7	3.0	4.0	0.0	
Incr Delay (d2), s/veh	9.9	0.0	0.1	0.6	1.7	0.0	
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	
%ile BackOfQ(50%),veh/ln	0.4	0.0	0.0	0.2	0.6	0.0	
Unsig. Movement Delay, s/veh							
LnGrp Delay(d),s/veh	27.5	0.0	7.8	3.6	5.7	0.0	
LnGrp LOS	С		Α	Α	Α		
Approach Vol, veh/h	35			543	836		
Approach Delay, s/veh	27.5			3.7	5.7		
Approach LOS	С			Α	Α		
Timer - Assigned Phs		2				6	8
Phs Duration (G+Y+Rc), s		30.3				30.3	7.0
Change Period (Y+Rc), s		5.5				5.5	5.5
Max Green Setting (Gmax), s		38.0				38.0	21.0
Max Q Clear Time (g_c+l1), s		13.2				13.7	2.9
Green Ext Time (p_c), s		11.5				6.6	0.0
Intersection Summary							
HCM 6th Ctrl Delay			5.5				
HCM 6th LOS			Α				
			/\				
Notes							

Future "No-Build" Intersection Analysis

Intersection						
Int Delay, s/veh	4.8					
		EDD	NDI	NDT	CDT	CDD
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	¥		ሻ	†	†	7
Traffic Vol, veh/h	87	59	59	792	367	133
Future Vol, veh/h	87	59	59	792	367	133
Conflicting Peds, #/hr	0	0	0	_ 0	_ 0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	Yield	-	None	-	Yield
Storage Length	0	-	255	-	-	270
Veh in Median Storage	, # 0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	93	93	93	93	93	93
Heavy Vehicles, %	16	20	11	9	9	6
Mvmt Flow	94	63	63	852	395	143
N. 4						
	Minor2		Major1		/lajor2	
Conflicting Flow All	1373	395	395	0	-	0
Stage 1	395	-	-	-	-	-
Stage 2	978	-	-	-	-	-
Critical Hdwy	6.56	6.4	4.21	-	-	-
Critical Hdwy Stg 1	5.56	-	-	-	-	-
Critical Hdwy Stg 2	5.56	-	-	-	-	-
Follow-up Hdwy	3.644	3.48	2.299	-	-	-
Pot Cap-1 Maneuver	150	617	1116	-	-	-
Stage 1	651	-	-	_	-	-
Stage 2	344	_	_	_	-	-
Platoon blocked, %	711			_	_	_
Mov Cap-1 Maneuver	142	617	1116	_		
Mov Cap-1 Maneuver	142	017	1110			_
	615	-	-	-	-	-
Stage 1		-	-	-	-	-
Stage 2	344	-	-	-	-	-
			NB		SB	
Approach	EB					
Approach HCM Control Delay s			0.6		. 0	
HCM Control Delay, s	45.3		0.6		0	
			0.6		0	
HCM Control Delay, s	45.3				0	
HCM Control Delay, s	45.3 E	NBL		EBLn1	0 SBT	SBR
HCM Control Delay, s HCM LOS Minor Lane/Major Mvn	45.3 E	NBL 1116		EBLn1 238		SBR -
HCM Control Delay, s HCM LOS	45.3 E	1116	NBT I	238		SBR -
HCM Control Delay, s HCM LOS Minor Lane/Major Mvn Capacity (veh/h) HCM Lane V/C Ratio	45.3 E	1116 0.057	NBT I	238 0.66	SBT -	-
HCM Control Delay, s HCM LOS Minor Lane/Major Mvn Capacity (veh/h) HCM Lane V/C Ratio HCM Control Delay (s)	45.3 E	1116 0.057 8.4	NBT I	238 0.66 45.3	SBT - -	-
HCM Control Delay, s HCM LOS Minor Lane/Major Mvn Capacity (veh/h) HCM Lane V/C Ratio	45.3 E	1116 0.057	NBT I - - -	238 0.66	SBT - -	- - -

Intersection						
Int Delay, s/veh	2.9					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
		EDK	INDL			SDR
Lane Configurations	**	2.4	1.1	4	100	20
Traffic Vol, veh/h	57	34	14	865	466	32
Future Vol, veh/h	57	34	14	865	466	32
Conflicting Peds, #/hr	0	0	_ 0	_ 0	_ 0	_ 0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-		-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage	-	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	2	2	8	9	9	3
Mvmt Flow	62	37	15	940	507	35
N 4 = 1 = = /N 41 = = =	N4:O		14-!4		4-:O	
	Minor2		Major1		/lajor2	
Conflicting Flow All	1495	525	542	0	-	0
Stage 1	525	-	-	-	-	-
Stage 2	970	-	-	-	-	-
Critical Hdwy	6.42	6.22	4.18	-	-	-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
Follow-up Hdwy	3.518	3.318	2.272	-	-	-
Pot Cap-1 Maneuver	135	552	997	-	-	-
Stage 1	593	-	-	-	-	-
Stage 2	368	-	-	-	-	_
Platoon blocked, %				-	_	-
Mov Cap-1 Maneuver	131	552	997	_	_	_
Mov Cap-2 Maneuver	131	-	-	_	_	_
Stage 1	575	_	_	_	_	_
Stage 2	368	_	_	_	_	_
Stage 2	300		_	_		_
Approach	EB		NB		SB	
HCM Control Delay, s	45.7		0.1		0	
HCM LOS	E					
J 200						
Minor Lane/Major Mvn	nt	NBL	NBT	EBLn1	SBT	SBR
Capacity (veh/h)		997	-		-	-
HCM Lane V/C Ratio		0.015	-	0.541	-	-
HCM Control Delay (s)		8.7	0	45.7	-	-
HCM Lane LOS		Α	Α	Ε	-	-
HCM 95th %tile Q(veh)	0	-	2.8	-	-

	۶	*	4	†	Ţ	4
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	٦	7	7	↑	†	7
Traffic Volume (vph)	16	6	14	1027	471	33
Future Volume (vph)	16	6	14	1027	471	33
Lane Group Flow (vph)	17	6	15	1081	496	35
Turn Type	Prot	Perm	Perm	NA	NA	Perm
Protected Phases	3			6	2	
Permitted Phases		3	6			2
Detector Phase	3	3	6	6	2	2
Switch Phase						
Minimum Initial (s)	5.0	5.0	15.0	15.0	15.0	15.0
Minimum Split (s)	26.5	26.5	28.5	28.5	28.5	28.5
Total Split (s)	26.5	26.5	63.5	63.5	63.5	63.5
Total Split (%)	29.4%	29.4%	70.6%	70.6%	70.6%	70.6%
Yellow Time (s)	3.5	3.5	3.5	3.5	3.5	3.5
All-Red Time (s)	2.0	2.0	2.0	2.0	2.0	2.0
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	5.5	5.5	5.5	5.5	5.5	5.5
Lead/Lag	0.0	0.0	0.0	0.0	0.0	0.0
Lead-Lag Optimize?						
Recall Mode	None	None	Min	Min	Min	Min
v/c Ratio	0.15	0.05	0.02	0.68	0.31	0.03
Control Delay	39.4	23.7	1.9	6.3	2.2	0.8
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	39.4	23.7	1.9	6.3	2.2	0.8
Queue Length 50th (ft)	59.4	23.7	0	0.5	0	0.0
Queue Length 95th (ft)	29	12	5	482	104	5
Internal Link Dist (ft)	535	12	ິ່	899	1249	3
. ,	555	140	315	099	1249	280
Turn Bay Length (ft)	344	333	766	1576	1576	1367
Base Capacity (vph)						
Starvation Cap Reductn	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0
Reduced v/c Ratio	0.05	0.02	0.02	0.69	0.31	0.03
Intersection Summary						
Cycle Length: 90						
Actuated Cycle Length: 72.1						
Natural Cycle: 90						
Control Type: Actuated-Unco	oordinated					
,,						
Splits and Phases: 3: Rive	erside Pkw	v & West	point Pkw	/V		
4		<i>j</i>	P • · · · · · · · · · · · · · · · · · ·	,		

Cane Configurations		۶	•	4	†	↓	1	
Fraffic Volume (veh/h) 16 6 14 1027 471 33 ruture Volume (veh/h) 16 6 14 1027 471 33 ruture Volume (veh/h) 16 6 14 1027 471 33 rutial Q (Db), veh 0 0 0 0 0 0 Ped-Bike Adj(A_pbT) 1.00 1.00 1.00 1.00 1.00 Portage Bus, Adj 1.00 1.00 1.00 1.00 1.00 Mork Zone On Approach No No No No No Adj Sat Flow, veh/h 1011 1159 1781 1767 1767 Adj Sat Flow, veh/h 17 0 15 1081 496 0 Percenet Heavy Veh, % 60 50 8 9 9 7 Dap, veh/h 20 725 1375 1375 1375 Arrive On Green 0.02 0.00 0.78 0.78 0.78 0.00	Movement	EBL	EBR	NBL	NBT	SBT	SBR	
Fraffic Volume (veh/h) 16 6 14 1027 471 33 "uture Volume (veh/h) 16 6 14 1027 471 33 "uture Volume (veh/h) 16 6 14 1027 471 33 "uture Volume (veh/h) 16 6 14 1027 471 33 "uture Volume (veh/h) 16 6 14 1027 471 33 "litial Q (Qb), veh 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Lane Configurations	*	7	*	*	*	7	
Future Volume (veh/h) 16 6 14 1027 471 33 nitial Q (Db), veh 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0								
Ped-Bike Adj(A_pbT) 1.00 1.00 1.00 1.00 1.00 Parking Bus, Adj 1.00 1.00 1.00 1.00 1.00 1.00 Parking Bus, Adj 1.00 1.00 1.00 1.00 1.00 1.00 1.00 Pork Zone On Approach No No No No No No No Adj Sat Flow, veh/h/lin 1011 1159 1781 1767 1767 1796 No Adj Flow Rate, veh/h 17 0 15 1081 496 0 Ped Hour Factor 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95	Future Volume (veh/h)	16	6	14	1027	471	33	
Ped-Bike Adj(A_pbT)	nitial Q (Qb), veh	0	0	0	0	0	0	
Parking Bus, Adj		1.00	1.00	1.00			1.00	
Adj Sat Flow, veh/h/ln Adj Flow Rate, veh/h Adj Flow Rate, veh/h 17 0 15 1081 496 0 Peak Hour Factor 0.95 0.00 0.0	Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	
Adj Flow Rate, veh/h Peak Hour Factor O.95 O.95 O.95 O.95 O.95 O.95 O.95 O.95	Work Zone On Approach	No			No	No		
Peak Hour Factor 0.95 0.96 28 26 26 0.00	Adj Sat Flow, veh/h/ln	1011	1159	1781	1767	1767	1796	
Percent Heavy Veh, % 60 50 8 9 9 7 Cap, veh/h 20 725 1375 1375 1375	Adj Flow Rate, veh/h	17	0	15	1081	496	0	
Cap, veh/h Arrive On Green 0.02 0.00 0.78 0.78 0.78 0.00 0.00 0.78 0.78	Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	
Arrive On Green 0.02 0.00 0.78 0.78 0.78 0.00 Sat Flow, veh/h 963 982 859 1767 1767 1522 Sign Volume(v), veh/h 17 0 15 1081 496 0 Sign Sat Flow(s), veh/h/ln 963 982 859 1767 1767 1522 Sign Volume(v), veh/h 963 982 859 1767 1767 1522 Sign Volume(v), veh/h/ln 963 982 859 1767 1767 1522 Sign Sat Flow(s), veh/h/ln 963 982 859 1767 1767 1522 Sign Sat Flow(s), veh/h/ln 963 982 859 1767 1767 1522 Sign Sat Flow(s), veh/h/ln 963 982 859 1767 1767 1767 1522 Sign Sat Flow(s), veh/h/ln 0.0 0.0 3.3 19.1 4.7 0.0 Sign Sat	Percent Heavy Veh, %	60	50	8	9	9	7	
Sat Flow, veh/h 963 982 859 1767 1767 1522	Cap, veh/h	20		725	1375	1375		
Gry Volume(v), veh/h 17 0 15 1081 496 0 Gry Sat Flow(s),veh/h/ln 963 982 859 1767 1767 1522 Q Serve(g_s), s 1.0 0.0 0.3 19.1 4.7 0.0 Dycle Q Clear(g_c), s 1.0 0.0 5.0 19.1 4.7 0.0 Prop In Lane 1.00 1.00 1.00 1.00 1.00 Lane Gry Cap(c), veh/h 20 725 1375 1375 V/C Ratio(X) 0.85 0.02 0.79 0.36 Avail Cap(c_a), veh/h 369 966 1870 1870 HCM Platoon Ratio 1.00 1.00 1.00 1.00 1.00 Jpstream Filter(l) 1.00 0.00 1.00 1.00 1.00 1.00 Jpstream Filter(l) 1.00 0.00 1.00 1.00 1.00 1.00 Jniform Delay (d), s/veh 58.6 0.0 0.0 2.6 3.5 1.9	Arrive On Green	0.02	0.00	0.78	0.78	0.78	0.00	
Gry Sat Flow(s),veh/h/ln 963 982 859 1767 1767 1522 Q Serve(g_s), s 1.0 0.0 0.3 19.1 4.7 0.0 Dycle Q Clear(g_c), s 1.0 0.0 5.0 19.1 4.7 0.0 Prop In Lane 1.00 1.00 1.00 1.00 1.00 Lane Gry Cap(c), veh/h 20 725 1375 1375 I/C Ratio(X) 0.85 0.02 0.79 0.36 Avail Cap(c_a), veh/h 369 966 1870 1870 HCM Platoon Ratio 1.00 1.00 1.00 1.00 1.00 Jpstream Filter(I) 1.00 0.00 1.00 1.00 1.00 1.00 Jpstream Filter(I) 1.00 0.00 1.00 1.00 1.00 1.00 Jpstream Filter(I) 1.00 0.0 1.00 1.00 1.00 0.00 Jpstream Filter(I) 1.00 0.0 1.00 1.00 0.0 0.0	Sat Flow, veh/h	963	982	859	1767	1767	1522	
Gry Sat Flow(s),veh/h/ln 963 982 859 1767 1767 1522 Q Serve(g_s), s 1.0 0.0 0.3 19.1 4.7 0.0 Dycle Q Clear(g_c), s 1.0 0.0 5.0 19.1 4.7 0.0 Prop In Lane 1.00 1.00 1.00 1.00 1.00 Lane Gry Cap(c), veh/h 20 725 1375 1375 I/C Ratio(X) 0.85 0.02 0.79 0.36 Avail Cap(c_a), veh/h 369 966 1870 1870 HCM Platoon Ratio 1.00 1.00 1.00 1.00 1.00 Jpstream Filter(I) 1.00 0.00 1.00 1.00 1.00 1.00 Jpstream Filter(I) 1.00 0.00 1.00 1.00 1.00 1.00 Jpstream Filter(I) 1.00 0.0 1.00 1.00 1.00 0.00 Jpstream Filter(I) 1.00 0.0 1.00 1.00 0.0 0.0		17	0	15	1081	496	0	
Q Serve(g_s), s 1.0 0.0 0.3 19.1 4.7 0.0 Cycle Q Clear(g_c), s 1.0 0.0 5.0 19.1 4.7 0.0 Cycle Q Clear(g_c), s 1.0 0.0 5.0 19.1 4.7 0.0 Cycle Q Clear(g_c), s 1.0 0.0 5.0 19.1 4.7 0.0 Cycle Q Clear(g_c), s 1.0 0.0 5.0 19.1 4.7 0.0 Cycle Q Clear(g_c), s 1.0 0.0 1.00 1.00 1.00 Canne Grp Cap(c), veh/h 20 725 1375 1375 Avail Cap(c_a), veh/h 369 966 1870 1870 HCM Platoon Ratio 1.00 1.00 1.00 1.00 1.00 1.00 Jpstream Filter(I) 1.00 0.00 1.00 1.00 1.00 0.00 Juliform Delay (d), s/veh 26.7 0.0 2.6 3.5 1.9 0.0 Incr Delay (d2), s/veh 58.6 0.0 0.0 2.6 0.3 0.0 Initial Q Delay(d3),s/veh 0.0 0.0 0.0 0.0 0.0 0.0 Wile BackOfQ(50%),veh/ln 0.5 0.0 0.0 1.0 0.1 0.0 Jnsig. Movement Delay, s/veh LnGrp Delay(d),s/veh 85.3 0.0 2.7 6.0 2.2 0.0 LnGrp LOS F A A A Approach Vol, veh/h 17 1096 496 Approach Delay, s/veh 85.3 6.0 2.2 Approach LOS F A A A Climer - Assigned Phs 2 6 8 Change Period (Y+Rc), s 48.2 48.2 6.6 Change Period (Y+Rc), s 5.5 Max Green Setting (Gmax), s 58.0 58.0 21.0 Max Q Clear Time (g_c+I1), s 6.7 21.1 3.0 Green Ext Time (p_c), s 6.9 21.5 0.0 Intersection Summary HCM 6th Ctrl Delay								
Cycle Q Clear(g_c), s 1.0 0.0 5.0 19.1 4.7 0.0 Prop In Lane 1.00 1.00 1.00 1.00 1.00 Arail Cap(c_a), veh/h 20 725 1375 1375 Avail Cap(c_a), veh/h 369 966 1870 1870 HCM Platoon Ratio 1.00 1.00 1.00 1.00 1.00 1.00 Jpstream Filter(I) 1.00 0.00 1.00 1.00 1.00 1.00 0.00 Jpstream Filter(I) 1.00 0.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0 <td< td=""><td></td><td></td><td></td><td></td><td>19.1</td><td></td><td></td><td></td></td<>					19.1			
Description Lane 1.00								
Cane Grp Cap(c), veh/h 20 725 1375		1.00	1.00	1.00			1.00	
Avail Cap(c_a), veh/h 369 966 1870 1870 HCM Platoon Ratio 1.00 1.00 1.00 1.00 1.00 1.00 Jpstream Filter(I) 1.00 0.00 1.00 1.00 1.00 0.00 Jniform Delay (d), s/veh 26.7 0.0 2.6 3.5 1.9 0.0 ncr Delay (d2), s/veh 58.6 0.0 0.0 2.6 0.3 0.0 nitial Q Delay(d3),s/veh 0.0 0.0 0.0 0.0 0.0 0.0 Jnsig. Movement Delay, s/veh 0.0 0.0 0.0 0.0 0.0 0.0 LnGrp Delay(d),s/veh 85.3 0.0 2.7 6.0 2.2 0.0 Approach Vol, veh/h 17 1096 496 Approach Delay, s/veh 85.3 6.0 2.2 Approach LOS F A A Filmer - Assigned Phs 2 6 8 Phs Duration (G+Y+Rc), s 5.5 5.5 5.5 Max Green Setting (Gmax), s 58.0 58.0 21.0 Max		20		725	1375	1375		
HCM Platoon Ratio 1.00 1.00 1.00 1.00 1.00 1.00 1.00 Upstream Filter(I) 1.00 0.00 1.00 1.00 0.00 Uniform Delay (d), s/veh 26.7 0.0 2.6 3.5 1.9 0.0 Uniform Delay (d2), s/veh 58.6 0.0 0.0 2.6 0.3 0.0 Unitial Q Delay(d3),s/veh 0.0 0.0 0.0 0.0 0.0 0.0 Unitial Q Delay(d5),veh/In 0.5 0.0 0.0 1.0 0.1 0.0 Unitial Q Delay, s/veh 0.0 0.0 0.0 0.0 0.0 0.0 Unitial Q Delay, s/veh 0.5 0.0 0.0 1.0 0.1 0.0 Unitial Q Delay, s/veh 0.5 0.0 0.0 1.0 0.1 0.0 Unitial Q Delay, s/veh 0.5 0.0 0.0 1.0 0.1 0.0 Unitial Q Delay, s/veh 0.5 0.0 0.0 1.0 0.1 0.0 Unitial Q Delay, s/veh 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Unitial Q Delay, s/veh 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Unitial Q Delay, s/veh 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Unitial Q Delay, s/veh 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Unitial Q Delay, s/veh 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	V/C Ratio(X)	0.85		0.02	0.79	0.36		
Destream Filter(I)	Avail Cap(c_a), veh/h	369		966	1870	1870		
Uniform Delay (d), s/veh 26.7 0.0 2.6 3.5 1.9 0.0 Incr Delay (d2), s/veh 58.6 0.0 0.0 2.6 0.3 0.0 Initial Q Delay(d3), s/veh 0.0 0.0 0.0 0.0 0.0 Initial Q Delay(d3), s/veh 0.5 0.0 0.0 0.0 0.0 Initial Q Delay(d3), s/veh 0.5 0.0 0.0 0.0 0.0 Initial Q Delay(d3), s/veh 0.5 0.0 0.0 0.0 0.0 Initial Q Delay(d3), s/veh 0.5 0.0 0.0 0.0 0.0 Initial Q Delay(d3), s/veh 0.5 0.0 0.0 0.0 0.0 Initial Q Delay(d3), s/veh 0.5 0.0 0.0 0.0 Initial Q Delay(d3), s/veh 0.0 0.0 0.0 Initial Question of the set of t	HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	
ncr Delay (d2), s/veh 58.6 0.0 0.0 2.6 0.3 0.0 nitial Q Delay(d3),s/veh 0.0 0.0 0.0 0.0 0.0 0.0 Wile BackOfQ(50%),veh/ln 0.5 0.0 0.0 1.0 0.1 0.0 Unsig. Movement Delay, s/veh LnGrp Delay(d),s/veh 85.3 0.0 2.7 6.0 2.2 0.0 LnGrp LOS F A A A Approach Vol, veh/h 17 1096 496 Approach Delay, s/veh 85.3 6.0 2.2 Approach LOS F A A A Fimer - Assigned Phs 2 6 8 Phs Duration (G+Y+Rc), s 48.2 48.2 6.6 Change Period (Y+Rc), s 5.5 5.5 Max Green Setting (Gmax), s 58.0 58.0 21.0 Max Q Clear Time (g_c+I1), s 6.7 21.1 3.0 Green Ext Time (p_c), s 6.9 21.5 0.0 Intersection Summary HCM 6th Ctrl Delay 5.7	Upstream Filter(I)	1.00	0.00	1.00	1.00	1.00	0.00	
nitial Q Delay(d3),s/veh 0.0 <td< td=""><td>Uniform Delay (d), s/veh</td><td>26.7</td><td>0.0</td><td>2.6</td><td>3.5</td><td>1.9</td><td>0.0</td><td></td></td<>	Uniform Delay (d), s/veh	26.7	0.0	2.6	3.5	1.9	0.0	
Wile BackOfQ(50%),veh/ln 0.5 0.0 0.0 1.0 0.1 0.0 Jnsig. Movement Delay, s/veh 85.3 0.0 2.7 6.0 2.2 0.0 LnGrp LOS F A A A Approach Vol, veh/h 17 1096 496 Approach Delay, s/veh 85.3 6.0 2.2 Approach LOS F A A Approach LOS F A A Finner - Assigned Phs 2 6 8 Phs Duration (G+Y+Rc), s 48.2 48.2 6.6 Change Period (Y+Rc), s 5.5 5.5 5.5 Max Green Setting (Gmax), s 58.0 21.0 Max Q Clear Time (g_c+l1), s 6.7 21.1 3.0 Green Ext Time (p_c), s 6.9 21.5 0.0 Intersection Summary 5.7	Incr Delay (d2), s/veh	58.6	0.0	0.0	2.6	0.3	0.0	
Unsig. Movement Delay, s/veh LnGrp Delay(d),s/veh 85.3 0.0 2.7 6.0 2.2 0.0 LnGrp LOS F A A A Approach Vol, veh/h 17 1096 496 Approach Delay, s/veh 85.3 6.0 2.2 Approach LOS F A A A Fimer - Assigned Phs 2 6 8 Phs Duration (G+Y+Rc), s 48.2 48.2 6.6 Change Period (Y+Rc), s 5.5 5.5 Max Green Setting (Gmax), s 58.0 58.0 21.0 Max Q Clear Time (g_c+l1), s 6.7 21.1 3.0 Green Ext Time (p_c), s 6.9 21.5 0.0 Intersection Summary HCM 6th Ctrl Delay 5.7	Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	
Approach Vol, veh/h Approach Delay, s/veh Approach Delay, s/veh Approach Delay, s/veh Approach LOS F Approach LOS F A A A A A A A A A A A A A A A A A A	%ile BackOfQ(50%),veh/ln	0.5	0.0	0.0	1.0	0.1	0.0	
Approach Vol, veh/h 17 1096 496 Approach Delay, s/veh 85.3 6.0 2.2 Approach LOS F A A A Approach LOS F A A A A Approach LOS F A A A Fimer - Assigned Phs 2 6 8 Phs Duration (G+Y+Rc), s 48.2 48.2 6.6 Change Period (Y+Rc), s 5.5 5.5 Max Green Setting (Gmax), s 58.0 58.0 21.0 Max Q Clear Time (g_c+l1), s 6.7 21.1 3.0 Green Ext Time (p_c), s 6.9 21.5 0.0 Intersection Summary HCM 6th Ctrl Delay 5.7	Jnsig. Movement Delay, s/veh							
Approach Vol, veh/h 17 1096 496 Approach Delay, s/veh 85.3 6.0 2.2 Approach LOS F A A Fimer - Assigned Phs 2 6 8 Phs Duration (G+Y+Rc), s 48.2 48.2 6.6 Change Period (Y+Rc), s 5.5 5.5 5.5 Max Green Setting (Gmax), s 58.0 58.0 21.0 Max Q Clear Time (g_c+l1), s 6.7 21.1 3.0 Green Ext Time (p_c), s 6.9 21.5 0.0 Intersection Summary HCM 6th Ctrl Delay 5.7	_nGrp Delay(d),s/veh	85.3	0.0	2.7	6.0		0.0	
Approach Delay, s/veh 85.3 6.0 2.2 Approach LOS F A A Fimer - Assigned Phs 2 6 8 Phs Duration (G+Y+Rc), s 48.2 48.2 6.6 Change Period (Y+Rc), s 5.5 5.5 Max Green Setting (Gmax), s 58.0 58.0 21.0 Max Q Clear Time (g_c+I1), s 6.7 21.1 3.0 Green Ext Time (p_c), s 6.9 21.5 0.0 Intersection Summary HCM 6th Ctrl Delay 5.7	_nGrp LOS	F		Α	Α	Α		
Approach LOS F A A Fimer - Assigned Phs 2 6 8 Phs Duration (G+Y+Rc), s 48.2 48.2 6.6 Change Period (Y+Rc), s 5.5 5.5 Max Green Setting (Gmax), s 58.0 58.0 21.0 Max Q Clear Time (g_c+l1), s 6.7 21.1 3.0 Green Ext Time (p_c), s 6.9 21.5 0.0 Intersection Summary HCM 6th Ctrl Delay 5.7	Approach Vol, veh/h	17			1096	496		
Firmer - Assigned Phs 2 6 8 Phs Duration (G+Y+Rc), s 48.2 48.2 6.6 Change Period (Y+Rc), s 5.5 5.5 5.5 Max Green Setting (Gmax), s 58.0 21.0 Max Q Clear Time (g_c+l1), s 6.7 21.1 3.0 Green Ext Time (p_c), s 6.9 21.5 0.0 Intersection Summary 4.7	Approach Delay, s/veh	85.3			6.0	2.2		
Phs Duration (G+Y+Rc), s 48.2 48.2 6.6 Change Period (Y+Rc), s 5.5 5.5 5.5 Max Green Setting (Gmax), s 58.0 58.0 21.0 Max Q Clear Time (g_c+I1), s 6.7 21.1 3.0 Green Ext Time (p_c), s 6.9 21.5 0.0 Intersection Summary HCM 6th Ctrl Delay 5.7	Approach LOS	F			Α	Α		
Phs Duration (G+Y+Rc), s 48.2 48.2 6.6 Change Period (Y+Rc), s 5.5 5.5 5.5 Max Green Setting (Gmax), s 58.0 58.0 21.0 Max Q Clear Time (g_c+I1), s 6.7 21.1 3.0 Green Ext Time (p_c), s 6.9 21.5 0.0 Intersection Summary HCM 6th Ctrl Delay 5.7	Timer - Assigned Phs		2				6	8
Change Period (Y+Rc), s 5.5 5.5 Max Green Setting (Gmax), s 58.0 21.0 Max Q Clear Time (g_c+l1), s 6.7 21.1 3.0 Green Ext Time (p_c), s 6.9 21.5 0.0 Intersection Summary HCM 6th Ctrl Delay 5.7								
Max Green Setting (Gmax), s 58.0 21.0 Max Q Clear Time (g_c+l1), s 6.7 21.1 3.0 Green Ext Time (p_c), s 6.9 21.5 0.0 Intersection Summary HCM 6th Ctrl Delay 5.7								
Max Q Clear Time (g_c+I1), s 6.7 21.1 3.0 Green Ext Time (p_c), s 6.9 21.5 0.0 Intersection Summary HCM 6th Ctrl Delay 5.7	· ,							
Green Ext Time (p_c), s 6.9 21.5 0.0 Intersection Summary HCM 6th Ctrl Delay 5.7								
ntersection Summary HCM 6th Ctrl Delay 5.7	Green Ext Time (p_c), s							
HCM 6th Ctrl Delay 5.7	" = '							
,				5.7				
HCM 6th LOS	HCM 6th LOS			3.7 A				
	Notes							

A&R Engineering Synchro 11 Report 23-198 DC BLOX - ATL WEST Data Center on N. River Road (DRI 4112) - Douglasville, GA Page 4

Intersection Int Delay, s/veh 92.6
Movement
Lane Configurations Y Image: configuration of the processing o
Traffic Vol, veh/h 273 112 40 286 727 82 Future Vol, veh/h 273 112 40 286 727 82 Conflicting Peds, #/hr 0 0 0 0 0 0 0 Sign Control Stop Stop Free Free Free Free Free RT Channelized - Yield None - Yield Stope Yield Yield Storage Length 0 - 255 - 270 Yoh in Median Storage, # 0 0 0 - Grade, % 0 0 0 - - 0 0 - Peak Hour Factor 94<
Future Vol, veh/h Conflicting Peds, #/hr O O O O O O O O O O O Sign Control Stop Stop Free Free Free Free Free Free RT Channelized - Yield Storage Length O - 255 - 270 Veh in Median Storage, # O Grade, % O - 0 Peak Hour Factor 94 94 94 94 94 94 94 94 94 9
Conflicting Peds, #/hr 0 0 0 0 0 0 Sign Control Stop Stop Free Free Free Free RT Channelized - Yield - None - Yield Storage Length 0 - 255 - - 270 Veh in Median Storage, # 0 - - 0 0 - Grade, % 0 - - 0 0 - Peak Hour Factor 94 94 94 94 94 Heavy Vehicles, % 3 9 24 9 9 10 Mvmt Flow 290 119 43 304 773 87 MajorI Major2 Conflicting Flow All 1163 773 773 0 - 0 Stage 1 773 773 773 0 - 0 Stage 2 390 - -
Sign Control Stop Free Free Free Free Free Free RTee Yield Starade, % 0 - - 0 0 -
RT Channelized - Yield None Yield Storage Length 0 - 255 - 270 Veh in Median Storage, # 0 0 0 0 - Grade, % 0 0 0 0 - Peak Hour Factor 94 94 94 94 94 94 94 94 94 Heavy Vehicles, % 3 9 24 9 9 10 9 10 Mvmt Flow 290 119 43 304 773 87 Conflicting Flow All 1163 773 773 0 - 0 Stage 1 773 5 - 5 Stage 2 390 5 - 5 Critical Hdwy 6.43 6.29 4.34 Critical Hdwy Stg 1 5.43 Critical Hdwy Stg 2 5.43
Storage Length 0 - 255 - - 270 Veh in Median Storage, # 0 - - 0 0 - Grade, % 0 - - 0 0 - Peak Hour Factor 94 94 94 94 94 94 Heavy Vehicles, % 3 9 24 9 9 10 Mvmt Flow 290 119 43 304 773 87 The stage 1 The stage 1 The stage 2 The stage 2 The stage 2 The stage 390 The stage 3
Veh in Median Storage, # 0 - - 0 0 - - 0 0 - - 0 0 - - 0 0 - - 0 0 - - Peak Hour Factor 94
Grade, % 0 0 0 0 - Peak Hour Factor 94 94 94 94 94 94 Heavy Vehicles, % 3 9 24 9 9 10 Mvmt Flow 290 119 43 304 773 87 Major/Minor Minor2 Major1 Major2 Conflicting Flow All 1163 773 773 0 - 0 Stage 1 773 Stage 2 390 Critical Hdwy 6.43 6.29 4.34 Critical Hdwy Stg 1 5.43 Critical Hdwy Stg 2 5.43 Follow-up Hdwy 3.527 3.381 2.416 Pot Cap-1 Maneuver ~ 214 388 752 Stage 2 682 Stage 2 682 Platoon blocked, % Mov Cap-1 Maneuver ~ 202 388 752 Mov Cap-2 Maneuver ~ 202
Peak Hour Factor 94
Heavy Vehicles, % 3 9 24 9 9 10 Mvmt Flow 290 119 43 304 773 87 Major/Minor Minor2 Major1 O Stage 1 773 773 0 - 0 Stage 2 390 Stage 2 390 Critical Hdwy 6.43 6.29 4.34 Critical Hdwy Stg 1 5.43 Critical Hdwy Stg 2 5.43 Follow-up Hdwy 3.527 3.381 2.416 Stage 1 454 Stage 2 682 Stage 2 682 Stage 2 682 Platoon blocked, % Mov Cap-1 Maneuver ~ 202 388 752 Mov Cap-2 Maneuver ~ 202
Mymt Flow 290 119 43 304 773 87 Major/Minor Minor2 Major1 Major2 Conflicting Flow All 1163 773 773 0 - 0 Stage 1 773 -
Major/Minor Minor2 Major1 Major2 Conflicting Flow All 1163 773 773 0 - 0 Stage 1 773 -
Conflicting Flow All 1163 773 773 0 - 0 Stage 1 773
Conflicting Flow All 1163 773 773 0 - 0 Stage 1 773
Stage 1 773 -
Stage 2 390 - - - - - - Critical Hdwy 6.43 6.29 4.34 - - - - Critical Hdwy Stg 1 5.43 - - - - - Critical Hdwy Stg 2 5.43 - - - - - Follow-up Hdwy 3.527 3.381 2.416 - - - - Pot Cap-1 Maneuver ~ 214 388 752 - - - - - Stage 1 454 -
Critical Hdwy Stg 1 5.43
Critical Hdwy Stg 1 5.43
Critical Hdwy Stg 2 5.43
Follow-up Hdwy 3.527 3.381 2.416
Pot Cap-1 Maneuver ~ 214 388 752
Stage 1 454 -
Stage 2 682 - - - - Platoon blocked, % - - - - Mov Cap-1 Maneuver ~ 202 388 752 - - - Mov Cap-2 Maneuver ~ 202 - - - -
Platoon blocked, %
Mov Cap-1 Maneuver ~ 202 388 752
Mov Cap-2 Maneuver ~ 202
Stage 2 682
Approach EB NB SB
HCM Control Delay, s\$ 364.4 1.2 0
HCM LOS F
Minor Lane/Major Mvmt NBL NBT EBLn1 SBT SBR
1011
HCM Control Delay (s) 10.1 -\$ 364.4
HCM Lane LOS B - F
HCM 95th %tile Q(veh) 0.2 - 26.7
Notes
~: Volume exceeds capacity \$: Delay exceeds 300s +: Computation Not Defined *: All major volume in platoon

Intersection						
Int Delay, s/veh	1.3					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	¥		1102	4	\$	- JDIN
Traffic Vol, veh/h	30	17	23	532	792	57
Future Vol, veh/h	30	17	23	532	792	57
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-		-	None
Storage Length	0	-	_	-	-	-
Veh in Median Storage		_	_	0	0	_
Grade, %	0	_	_	0	0	_
Peak Hour Factor	93	93	93	93	93	93
Heavy Vehicles, %	2	2	2	9	9	2
Mvmt Flow	32	18	25	572	852	61
WWITCHIOW	UZ.	10	20	012	002	O I
	Minor2		Major1		//ajor2	
Conflicting Flow All	1505	883	913	0	-	0
Stage 1	883	-	-	-	-	-
Stage 2	622	-	-	-	-	-
Critical Hdwy	6.42	6.22	4.12	-	-	-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
	3.518	3.318	2.218	-	-	-
Pot Cap-1 Maneuver	133	345	746	-	-	-
Stage 1	404	-	-	-	-	-
Stage 2	535	-	-	-	-	-
Platoon blocked, %				-	-	-
Mov Cap-1 Maneuver	126	345	746	-	-	-
Mov Cap-2 Maneuver	126	-	-	-	-	_
Stage 1	384	_	-	_	_	_
Stage 2	535	_	_	_	_	_
Jugo Z	500					
Approach	EB		NB		SB	
HCM Control Delay, s	36.4		0.4		0	
HCM LOS	Е					
Minor Lane/Major Mvm	4	NBL	NDT	EDI 51	CDT	CDD
ivilitor Larie/Iviaior ivivm		INNI	INDI	EBLn1	SBT	SBR
				101		
Capacity (veh/h)		746	-	164	-	-
Capacity (veh/h) HCM Lane V/C Ratio	L	746 0.033	-	0.308	-	-
Capacity (veh/h) HCM Lane V/C Ratio HCM Control Delay (s)		746 0.033 10	- - 0	0.308 36.4	-	-
Capacity (veh/h) HCM Lane V/C Ratio		746 0.033	-	0.308	-	

	•	*	4	1	ļ	4
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	*	7	7	↑	↑	7
Traffic Volume (vph)	34	6	5	580	834	14
Future Volume (vph)	34	6	5	580	834	14
Lane Group Flow (vph)	37	7	5	637	916	15
Turn Type	Prot	Perm	Perm	NA	NA	Perm
Protected Phases	3			6	2	
Permitted Phases		3	6			2
Detector Phase	3	3	6	6	2	2
Switch Phase						
Minimum Initial (s)	5.0	5.0	15.0	15.0	15.0	15.0
Minimum Split (s)	26.5	26.5	28.5	28.5	28.5	28.5
Total Split (s)	26.5	26.5	53.5	53.5	53.5	53.5
Total Split (%)	33.1%	33.1%	66.9%	66.9%	66.9%	66.9%
Yellow Time (s)	3.5	3.5	3.5	3.5	3.5	3.5
All-Red Time (s)	2.0	2.0	2.0	2.0	2.0	2.0
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	5.5	5.5	5.5	5.5	5.5	5.5
Lead/Lag						
Lead-Lag Optimize?						
Recall Mode	None	None	Min	Min	Min	Min
v/c Ratio	0.21	0.04	0.02	0.43	0.63	0.02
Control Delay	31.7	17.3	3.2	4.4	7.0	1.6
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	31.7	17.3	3.2	4.4	7.0	1.6
Queue Length 50th (ft)	16	0	1	87	168	0
Queue Length 95th (ft)	39	11	3	166	343	4
Internal Link Dist (ft)	535			899	1249	
Turn Bay Length (ft)	000	140	315	333	12-13	280
Base Capacity (vph)	527	520	226	1465	1465	769
Starvation Cap Reductn	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0
Reduced v/c Ratio	0.07	0.01	0.02	0.43	0.63	0.02
	0.01	0.01	0.02	0.10	0.00	0.02
Intersection Summary						
Cycle Length: 80						
Actuated Cycle Length: 61						
Natural Cycle: 80						
Control Type: Actuated-Unc	coordinated					
Splits and Dhases: 3: Div	ida Di	0 \\/ 1				

Splits and Phases: 3: Riverside Pkwy & Westpoint Pkwy

	۶	•	4	†	ļ	4	
Movement	EBL	EBR	NBL	NBT	SBT	SBR	
Lane Configurations	*	7	7	^	↑	7	
Traffic Volume (veh/h)	34	6	5	580	834	14	
uture Volume (veh/h)	34	6	5	580	834	14	
nitial Q (Qb), veh	0	0	0	0	0	0	
Ped-Bike Adj(A_pbT)	1.00	1.00	1.00			1.00	
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	
Work Zone On Approach	No			No	No		
Adj Sat Flow, veh/h/ln	1485	1648	714	1767	1767	759	
Adj Flow Rate, veh/h	37	0	5	637	916	0	
Peak Hour Factor	0.91	0.91	0.91	0.91	0.91	0.91	
Percent Heavy Veh, %	28	17	80	9	9	77	
Cap, veh/h	59	.,	256	1250	1250		
Arrive On Green	0.04	0.00	0.71	0.71	0.71	0.00	
Sat Flow, veh/h	1414	1397	233	1767	1767	643	
Grp Volume(v), veh/h	37	0	5	637	916	0	
Grp Sat Flow(s), veh/h/ln	1414	1397	233	1767	1767	643	
Q Serve(g_s), s	1.1	0.0	0.6	7.2	13.8	0.0	
Cycle Q Clear(g_c), s	1.1	0.0	14.4	7.2	13.8	0.0	
Prop In Lane	1.00	1.00	1.00	1.2	13.0	1.00	
Lane Grp Cap(c), veh/h	59	1.00	256	1250	1250	1.00	
V/C Ratio(X)	0.63		0.02	0.51	0.73		
Avail Cap(c_a), veh/h	678		346	1937	1937		
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	
Jpstream Filter(I)	1.00	0.00	1.00	1.00	1.00	0.00	
Uniform Delay (d), s/veh	20.7	0.00	8.3	2.9	3.9	0.00	
	10.7	0.0	0.3	0.7	1.8	0.0	
Incr Delay (d2), s/veh	0.0	0.0	0.1	0.7	0.0	0.0	
Initial Q Delay(d3),s/veh	0.0	0.0		0.0	0.0		
%ile BackOfQ(50%),veh/ln		0.0	0.0	0.3	0.7	0.0	
Jnsig. Movement Delay, s/veh		0.0	0.2	2.6	F 7	0.0	
LnGrp Delay(d),s/veh	31.4	0.0	8.3	3.6	5.7	0.0	
LnGrp LOS	C		A	A	A 046		
Approach Vol, veh/h	37			642	916		
Approach Delay, s/veh	31.4			3.7	5.7		
Approach LOS	С			Α	Α		
Timer - Assigned Phs		2				6	8
Phs Duration (G+Y+Rc), s		36.5				36.5	7.3
Change Period (Y+Rc), s		5.5				5.5	5.5
Max Green Setting (Gmax), s		48.0				48.0	21.0
Max Q Clear Time (g_c+I1), s		15.8				16.4	3.1
Green Ext Time (p_c), s		15.2				9.1	0.1
Intersection Summary							
HCM 6th Ctrl Delay			5.5				
HCM 6th LOS			3.5 A				
			A				
Notes							

Future "No-Build" Intersection Analysis with Improvements

	۶	•	1	1	Ţ	1
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	7	7	*	↑	†	7
Traffic Volume (vph)	87	59	59	792	367	133
Future Volume (vph)	87	59	59	792	367	133
Lane Group Flow (vph)	94	63	63	852	395	143
Turn Type	Prot	Perm	Perm	NA	NA	Perm
Protected Phases	3			6	2	
Permitted Phases		3	6			2
Detector Phase	3	3	6	6	2	2
Switch Phase						
Minimum Initial (s)	5.0	5.0	15.0	15.0	15.0	15.0
Minimum Split (s)	15.0	15.0	28.5	28.5	28.5	28.5
Total Split (s)	15.0	15.0	45.0	45.0	45.0	45.0
Total Split (%)	25.0%	25.0%	75.0%	75.0%	75.0%	75.0%
Yellow Time (s)	3.5	3.5	3.5	3.5	3.5	3.5
All-Red Time (s)	2.0	2.0	2.0	2.0	2.0	2.0
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	5.5	5.5	5.5	5.5	5.5	5.5
Lead/Lag	0.0	0.0	0.0	0.0	0.0	0.0
Lead-Lag Optimize?						
Recall Mode	None	None	Min	Min	Min	Min
v/c Ratio	0.39	0.24	0.10	0.68	0.31	0.13
Control Delay	27.6	9.8	4.2	9.9	5.0	1.1
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	27.6	9.8	4.2	9.9	5.0	1.1
Queue Length 50th (ft)	27.0	9.0	6	158	48	0
	69	28	18	303	89	14
Queue Length 95th (ft)		20	10	1053		14
Internal Link Dist (ft)	583	150	255	1053	851	270
Turn Bay Length (ft)	000	150	255	4004	4004	270
Base Capacity (vph)	292	304	686	1321	1321	1190
Starvation Cap Reductn	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0
Reduced v/c Ratio	0.32	0.21	0.09	0.64	0.30	0.12
Intersection Summary						
Cycle Length: 60						
Actuated Cycle Length: 52.5						
Natural Cycle: 60						
Control Type: Actuated-Unco	ordinated					
Control Type. Actuated-Office	Jordinaled					
Splits and Phases: 1: Rive	erside Pkw	v&N Ri	ver Rd			
2 1. Tuve	J. G. J. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	<i>,</i> ∞ . 11. 11.	. 51 110			
₩ Ø2						
45 s						
≪†						
1 Ø6						

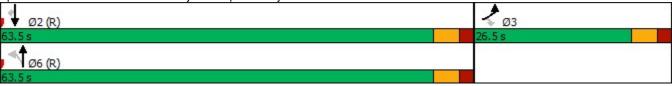
	۶	•	4	†	ļ	1	
Movement	EBL	EBR	NBL	NBT	SBT	SBR	
Lane Configurations	*	7	7	^	↑	7	
Traffic Volume (veh/h)	87	59	59	792	367	133	
Future Volume (veh/h)	87	59	59	792	367	133	
Initial Q (Qb), veh	0	0	0	0	0	0	
Ped-Bike Adj(A_pbT)	1.00	1.00	1.00			1.00	
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	
Work Zone On Approach	No			No	No		
Adj Sat Flow, veh/h/ln	1663	1604	1737	1767	1767	1811	
Adj Flow Rate, veh/h	94	0	63	852	395	0	
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93	
Percent Heavy Veh, %	16	20	11	9	9	6	
Cap, veh/h	126		686	1163	1163		
Arrive On Green	0.08	0.00	0.66	0.66	0.66	0.00	
Sat Flow, veh/h	1584	1359	919	1767	1767	1535	
Grp Volume(v), veh/h	94	0	63	852	395	0	
Grp Sat Flow(s),veh/h/ln	1584	1359	919	1767	1767	1535	
Q Serve(g_s), s	2.4	0.0	1.4	13.3	4.1	0.0	
Cycle Q Clear(g_c), s	2.4	0.0	5.5	13.3	4.1	0.0	
Prop In Lane	1.00	1.00	1.00			1.00	
Lane Grp Cap(c), veh/h	126		686	1163	1163		
V/C Ratio(X)	0.75		0.09	0.73	0.34		
Avail Cap(c_a), veh/h	358		946	1663	1663		
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	
Upstream Filter(I)	1.00	0.00	1.00	1.00	1.00	0.00	
Jniform Delay (d), s/veh	18.9	0.0	4.4	4.7	3.2	0.0	
Incr Delay (d2), s/veh	8.6	0.0	0.1	2.0	0.4	0.0	
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	
%ile BackOfQ(50%),veh/ln	1.1	0.0	0.1	1.3	0.3	0.0	
Jnsig. Movement Delay, s/veh							
LnGrp Delay(d),s/veh	27.5	0.0	4.5	6.7	3.5	0.0	
_nGrp LOS	С		Α	Α	Α		
Approach Vol, veh/h	94			915	395		
Approach Delay, s/veh	27.5			6.6	3.5		
Approach LOS	С			Α	Α		
Fimer - Assigned Phs		2				6	8
Phs Duration (G+Y+Rc), s		33.1				33.1	8.8
Change Period (Y+Rc), s		5.5				5.5	5.5
Max Green Setting (Gmax), s		39.5				39.5	9.5
Max Q Clear Time (g_c+l1), s		6.1				15.3	4.4
Green Ext Time (p_c), s		4.8				12.3	0.1
``		7.0				12.0	0.1
ntersection Summary			7.1				
HCM 6th Ctrl Delay HCM 6th LOS			7.1 A				
			А				
Notes							

Intersection						
Int Delay, s/veh	2.8					
		EDD	ND	NDT	ODT	000
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	Y	0.4	4.4	4	₽	00
Traffic Vol, veh/h	57	34	14	865	466	32
Future Vol, veh/h	57	34	14	865	466	32
Conflicting Peds, #/hr	0	0	_ 0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage,		-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	0	0	8	9	9	3
Mvmt Flow	62	37	15	940	507	35
NA = : = = /NA: = = = = = = = = = = = = = = = = = = =	i:O		M-!4		A-:O	
	linor2		Major1		/lajor2	
	1495	525	542	0	-	0
Stage 1	525	-	-	-	-	-
Stage 2	970	-	-	-	-	-
Critical Hdwy	6.4	6.2	4.18	-	-	-
Critical Hdwy Stg 1	5.4	-	-	-	-	-
Critical Hdwy Stg 2	5.4	-	-	-	-	-
Follow-up Hdwy	3.5	3.3	2.272	-	-	-
Pot Cap-1 Maneuver	137	556	997	-	-	-
Stage 1	598	-	-	-	-	-
Stage 2	371	-	-	-	-	-
Platoon blocked, %				-	-	-
Mov Cap-1 Maneuver	133	556	997	-	-	-
Mov Cap-2 Maneuver	133	_	-	-	_	-
Stage 1	579	_	_	_	_	_
Stage 2	371	_	_	_	_	_
Olago 2	07.1					
Approach	EB		NB		SB	
HCM Control Delay, s	44.4		0.1		0	
HCM LOS	Ε					
	E					
HCM LOS		NDI	NRT	ERI n1	CRT	QRD
HCM LOS Minor Lane/Major Mvmt		NBL	NBT	EBLn1	SBT	SBR
Minor Lane/Major Mvmt Capacity (veh/h)		997	-	186	-	-
Minor Lane/Major Mvmt Capacity (veh/h) HCM Lane V/C Ratio		997 0.015	-	186 0.532	-	SBR - -
Minor Lane/Major Mvmt Capacity (veh/h) HCM Lane V/C Ratio HCM Control Delay (s)		997 0.015 8.7	- - 0	186 0.532 44.4	- - -	- - -
Minor Lane/Major Mvmt Capacity (veh/h) HCM Lane V/C Ratio		997 0.015	-	186 0.532	-	-

	•	•	1	†	ļ	4
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	*	7	*	↑	†	7
Traffic Volume (vph)	16	6	14	1027	471	33
Future Volume (vph)	16	6	14	1027	471	33
Lane Group Flow (vph)	17	6	15	1081	496	35
Turn Type	Prot	Perm	Perm	NA	NA	Perm
Protected Phases	3			6	2	
Permitted Phases		3	6			2
Detector Phase	3	3	6	6	2	2
Switch Phase						
Minimum Initial (s)	5.0	5.0	15.0	15.0	15.0	15.0
Minimum Split (s)	26.5	26.5	28.5	28.5	28.5	28.5
Total Split (s)	26.5	26.5	63.5	63.5	63.5	63.5
Total Split (%)	29.4%	29.4%	70.6%	70.6%	70.6%	70.6%
Yellow Time (s)	3.5	3.5	3.5	3.5	3.5	3.5
All-Red Time (s)	2.0	2.0	2.0	2.0	2.0	2.0
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	5.5	5.5	5.5	5.5	5.5	5.5
Lead/Lag						
Lead-Lag Optimize?						
Recall Mode	None	None	C-Min	C-Min	C-Min	C-Min
v/c Ratio	0.19	0.07	0.02	0.68	0.31	0.03
Control Delay	43.1	24.0	1.9	6.3	2.2	0.8
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	43.1	24.0	1.9	6.3	2.2	0.8
Queue Length 50th (ft)	9	0	0	0	0	0
Queue Length 95th (ft)	29	12	5	482	104	5
Internal Link Dist (ft)	535			899	1249	
Turn Bay Length (ft)		140	315			280
Base Capacity (vph)	263	255	774	1591	1591	1380
Starvation Cap Reductn	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0
Reduced v/c Ratio	0.06	0.02	0.02	0.68	0.31	0.03
	2.30	V.V -	J.J_		J.J.	

Intersection Summary

Cycle Length: 90


Actuated Cycle Length: 90

Offset: 0 (0%), Referenced to phase 2:SBT and 6:NBTL, Start of Green

Natural Cycle: 90

Control Type: Actuated-Coordinated

Synchro 11 Report A&R Engineering 23-198 DC BLOX - ATL WEST Data Center on N. River Road (DRI 4112) - Douglasville, GA Page 4

Page 5

	۶	*	4	†	↓	4		
Movement	EBL	EBR	NBL	NBT	SBT	SBR		
Lane Configurations	*	7	*	*	†	7		
Traffic Volume (veh/h)	16	6	14	1027	471	33		
Future Volume (veh/h)	16	6	14	1027	471	33		
Initial Q (Qb), veh	0	0	0	0	0	0		
Ped-Bike Adj(A_pbT)	1.00	1.00	1.00	•	J	1.00		
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00		
Nork Zone On Approach	No	1.00	1.00	No	No	1.00		
Adj Sat Flow, veh/h/ln	1011	1159	1781	1767	1767	1796		
Adj Flow Rate, veh/h	17	0	15	1081	496	0		
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95		
Percent Heavy Veh, %	60	50	8	9	9	7		
Cap, veh/h	19	50	770	1517	1517	ı		
Arrive On Green	0.02	0.00	0.86	0.86	0.86	0.00		
Sat Flow, veh/h	963	982	859	1767	1767	1522		
Grp Volume(v), veh/h	17	0	15	1081	496	1500		
Grp Sat Flow(s),veh/h/ln	963	982	859	1767	1767	1522		
Q Serve(g_s), s	1.6	0.0	0.3	20.1	5.0	0.0		
Cycle Q Clear(g_c), s	1.6	0.0	5.3	20.1	5.0	0.0		
Prop In Lane	1.00	1.00	1.00	4545	4545	1.00		
_ane Grp Cap(c), veh/h	19		770	1517	1517			
V/C Ratio(X)	0.92		0.02	0.71	0.33			
Avail Cap(c_a), veh/h	225		770	1517	1517			
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00		
Jpstream Filter(I)	1.00	0.00	1.00	1.00	1.00	0.00		
Jniform Delay (d), s/veh	44.1	0.0	1.8	2.3	1.3	0.0		
ncr Delay (d2), s/veh	76.5	0.0	0.0	2.9	0.6	0.0		
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0		
%ile BackOfQ(50%),veh/ln	8.0	0.0	0.0	1.2	0.2	0.0		
Unsig. Movement Delay, s/veh								
LnGrp Delay(d),s/veh	120.6	0.0	1.8	5.2	1.8	0.0		
nGrp LOS	F		A	A	A			
Approach Vol, veh/h	17			1096	496			
Approach Delay, s/veh	120.6			5.2	1.8			
Approach LOS	F			Α	Α			
Timer - Assigned Phs		2				6	8	
Phs Duration (G+Y+Rc), s		82.8				82.8	7.2	
Change Period (Y+Rc), s		5.5				5.5	5.5	
Max Green Setting (Gmax), s		58.0				58.0	21.0	
Max Q Clear Time (g_c+l1), s		7.0				22.1	3.6	
Green Ext Time (p_c), s		6.9				21.2	0.0	
Intersection Summary								
HCM 6th Ctrl Delay			5.3					
HCM 6th LOS			Α					
Notes								

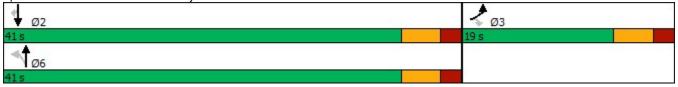
Unsignalized Delay for [EBR, SBR] is excluded from calculations of the approach delay and intersection delay.

Lane Group EBL EBR NBL NBT SBT SBR Lane Configurations 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 286 727 82 2 </th
Traffic Volume (vph) 273 112 40 286 727 82 Future Volume (vph) 273 112 40 286 727 82 Lane Group Flow (vph) 290 119 43 304 773 87 Turn Type Prot Perm Perm NA NA Perm Protected Phases 3 6 2 2 Detector Phase 3 3 6 6 2 Switch Phase 3 3 6 6 2 2 Minimum Initial (s) 5.0 5.0 15.0 15.0 15.0 15.0 Minimum Split (s) 15.0 15.0 28.5 28.5 28.5 28.5 Total Split (s) 19.0 19.0 41.0 41.0 41.0 41.0 Total Split (s) 31.7% 31.7% 68.3% 68.3% 68.3% 68.3% Yellow Time (s) 3.5 3.5 3.5 3.5 3.5 </th
Traffic Volume (vph) 273 112 40 286 727 82 Future Volume (vph) 273 112 40 286 727 82 Lane Group Flow (vph) 290 119 43 304 773 87 Turn Type Prot Perm Perm NA NA Perm Protected Phases 3 6 2 2 Detector Phase 3 3 6 6 2 2 Switch Phase 3 3 6 6 2 2 2 Minimum Initial (s) 5.0 5.0 15.
Future Volume (vph) 273 112 40 286 727 82 Lane Group Flow (vph) 290 119 43 304 773 87 Turn Type Prot Perm Perm NA NA Perm Permitted Phases 3 6 2 2 Detector Phase 3 3 6 6 2 2 Switch Phase 3 3 6 6 2 2 2 Minimum Initial (s) 5.0 5.0 15.0
Lane Group Flow (vph) 290 119 43 304 773 87 Turn Type Prot Perm Perm NA NA Perm Protected Phases 3 6 2 2 Detector Phase 3 3 6 6 2 2 Switch Phase 3 3 6 6 2 2 Minimum Initial (s) 5.0 5.0 15.0 15.0 15.0 15.0 Minimum Split (s) 15.0 15.0 28.5 28.5 28.5 28.5 Minimum Initial (s) 5.0 5.0 15.0 15.0 15.0 15.0 Minimum Split (s) 15.0 15.0 28.5 28.5 28.5 28.5 Total Split (s) 31.7% 31.7% 68.3% 68.3% 68.3% 68.3% Yellow Time (s) 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5
Turn Type Prot Perm Perm NA NA Perm Protected Phases 3 6 2 Permitted Phases 3 6 2 Detector Phase 3 3 6 6 2 Switch Phase 4 5.0 5.0 15.0 15.0 15.0 15.0 Minimum Initial (s) 5.0 5.0 15.0 28.5 28.5 28.5 28.5
Protected Phases 3 6 2 Permitted Phases 3 6 2 Switch Phase 3 3 6 6 2 Switch Phase 8 2 2 Minimum Initial (s) 5.0 5.0 15.0 15.0 15.0 Minimum Split (s) 15.0 15.0 28.5 28.5 28.5 28.5 Total Split (s) 19.0 19.0 41.0
Detector Phase 3 3 6 6 2 2 Switch Phase Minimum Initial (s) 5.0 5.0 15.0 15.0 15.0 15.0 Minimum Split (s) 15.0 15.0 28.5 28.5 28.5 28.5 Total Split (s) 19.0 19.0 41.0
Detector Phase 3 3 6 6 2 2 Switch Phase Minimum Initial (s) 5.0 5.0 15.0 15.0 15.0 15.0 Minimum Split (s) 15.0 15.0 28.5 28.5 28.5 28.5 Total Split (s) 19.0 19.0 41.0
Minimum Initial (s) 5.0 5.0 15.0 15.0 15.0 Minimum Split (s) 15.0 15.0 28.5 28.5 28.5 Total Split (s) 19.0 19.0 41.0 41.0 41.0 41.0 Total Split (%) 31.7% 31.7% 68.3% 68.3% 68.3% 68.3% Yellow Time (s) 3.5 3.5 3.5 3.5 3.5 3.5 3.5 All-Red Time (s) 2.0
Minimum Initial (s) 5.0 5.0 15.0 15.0 15.0 Minimum Split (s) 15.0 15.0 28.5 28.5 28.5 Total Split (s) 19.0 19.0 41.0 41.0 41.0 41.0 Total Split (%) 31.7% 31.7% 68.3% 68.3% 68.3% 68.3% Yellow Time (s) 3.5 3.5 3.5 3.5 3.5 3.5 3.5 All-Red Time (s) 2.0
Minimum Split (s) 15.0 15.0 28.5 28.5 28.5 Total Split (s) 19.0 19.0 41.0 41.0 41.0 41.0 Total Split (%) 31.7% 31.7% 68.3% 68.3% 68.3% 68.3% Yellow Time (s) 3.5 3.5 3.5 3.5 3.5 3.5 All-Red Time (s) 2.0 2.0 2.0 2.0 2.0 2.0 2.0 Lost Time Adjust (s) 0.0 <t< td=""></t<>
Total Split (s) 19.0 19.0 41.0 41.0 41.0 41.0 Total Split (%) 31.7% 31.7% 68.3% 68.3% 68.3% 68.3% Yellow Time (s) 3.5 3.5 3.5 3.5 3.5 3.5 All-Red Time (s) 2.0 2.0 2.0 2.0 2.0 2.0 Lost Time Adjust (s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Total Lost Time (s) 5.5 5.5 5.5 5.5 5.5 5.5 5.5 Lead-Lag Detail Lost Time (s) 5.5 5.
Total Split (%) 31.7% 31.7% 68.3% 68.3% 68.3% 68.3% Yellow Time (s) 3.5 3.5 3.5 3.5 3.5 3.5 All-Red Time (s) 2.0 2.0 2.0 2.0 2.0 2.0 Lost Time Adjust (s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Total Lost Time (s) 5.5
Yellow Time (s) 3.5
All-Red Time (s) 2.0 2.0 2.0 2.0 2.0 2.0 Lost Time Adjust (s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Total Lost Time (s) 5.5 5.5 5.5 5.5 5.5 5.5 5.5 Lead/Lag Lead-Lag Optimize? Recall Mode None None Min Min Min Min V/c Ratio 0.72 0.28 0.23 0.31 0.80 0.10 Control Delay 33.3 6.6 9.4 7.2 16.8 1.8 Queue Delay 0.0 0.0 0.0 0.0 0.0 0.0 Total Delay 33.3 6.6 9.4 7.2 16.8 1.8 Queue Length 50th (ft) 95 0 6 47 179 0 Queue Length 95th (ft) #202 34 22 84 312 14 Internal Link Dist (ft) 583 1053 851 Turn Bay Length (ft) 150 255 270
Lost Time Adjust (s) 0.0
Total Lost Time (s) 5.5 5.5 5.5 5.5 5.5 5.5 Lead/Lag Lead-Lag Optimize? Recall Mode None None Min Min Min Min Min V/c Ratio 0.72 0.28 0.23 0.31 0.80 0.10 Control Delay 33.3 6.6 9.4 7.2 16.8 1.8 Queue Delay 0.0 0.0 0.0 0.0 0.0 0.0 Total Delay 33.3 6.6 9.4 7.2 16.8 1.8 Queue Length 50th (ft) 95 0 6 47 179 0 Queue Length 95th (ft) #202 34 22 84 312 14 Internal Link Dist (ft) 583 1053 851 Turn Bay Length (ft) 150 255 270
Lead/Lag Lead-Lag Optimize? Recall Mode None None Min Min Min Min v/c Ratio 0.72 0.28 0.23 0.31 0.80 0.10 Control Delay 33.3 6.6 9.4 7.2 16.8 1.8 Queue Delay 0.0 0.0 0.0 0.0 0.0 0.0 Total Delay 33.3 6.6 9.4 7.2 16.8 1.8 Queue Length 50th (ft) 95 0 6 47 179 0 Queue Length 95th (ft) #202 34 22 84 312 14 Internal Link Dist (ft) 583 1053 851 Turn Bay Length (ft) 150 255 270
Lead-Lag Optimize? None None Min Min Min Min v/c Ratio 0.72 0.28 0.23 0.31 0.80 0.10 Control Delay 33.3 6.6 9.4 7.2 16.8 1.8 Queue Delay 0.0 0.0 0.0 0.0 0.0 0.0 Total Delay 33.3 6.6 9.4 7.2 16.8 1.8 Queue Length 50th (ft) 95 0 6 47 179 0 Queue Length 95th (ft) #202 34 22 84 312 14 Internal Link Dist (ft) 583 1053 851 Turn Bay Length (ft) 150 255 270
Recall Mode None None Min Min Min Min v/c Ratio 0.72 0.28 0.23 0.31 0.80 0.10 Control Delay 33.3 6.6 9.4 7.2 16.8 1.8 Queue Delay 0.0 0.0 0.0 0.0 0.0 0.0 Total Delay 33.3 6.6 9.4 7.2 16.8 1.8 Queue Length 50th (ft) 95 0 6 47 179 0 Queue Length 95th (ft) #202 34 22 84 312 14 Internal Link Dist (ft) 583 1053 851 Turn Bay Length (ft) 150 255 270
Control Delay 33.3 6.6 9.4 7.2 16.8 1.8 Queue Delay 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Total Delay 33.3 6.6 9.4 7.2 16.8 1.8 Queue Length 50th (ft) 95 0 6 47 179 0 Queue Length 95th (ft) #202 34 22 84 312 14 Internal Link Dist (ft) 583 1053 851 Turn Bay Length (ft) 150 255 270
Queue Delay 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Total Delay 33.3 6.6 9.4 7.2 16.8 1.8 Queue Length 50th (ft) 95 0 6 47 179 0 Queue Length 95th (ft) #202 34 22 84 312 14 Internal Link Dist (ft) 583 1053 851 Turn Bay Length (ft) 150 255 270
Queue Delay 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Total Delay 33.3 6.6 9.4 7.2 16.8 1.8 Queue Length 50th (ft) 95 0 6 47 179 0 Queue Length 95th (ft) #202 34 22 84 312 14 Internal Link Dist (ft) 583 1053 851 Turn Bay Length (ft) 150 255 270
Total Delay 33.3 6.6 9.4 7.2 16.8 1.8 Queue Length 50th (ft) 95 0 6 47 179 0 Queue Length 95th (ft) #202 34 22 84 312 14 Internal Link Dist (ft) 583 1053 851 Turn Bay Length (ft) 150 255 270
Queue Length 50th (ft) 95 0 6 47 179 0 Queue Length 95th (ft) #202 34 22 84 312 14 Internal Link Dist (ft) 583 1053 851 Turn Bay Length (ft) 150 255 270
Queue Length 95th (ft) #202 34 22 84 312 14 Internal Link Dist (ft) 583 1053 851 Turn Bay Length (ft) 150 255 270
Internal Link Dist (ft) 583 1053 851 Turn Bay Length (ft) 150 255 270
Turn Bay Length (ft) 150 255 270
· · · · · · · · · · · · · · · · · · ·
Starvation Cap Reductn 0 0 0 0 0
Spillback Cap Reductn 0 0 0 0 0
Storage Cap Reductn 0 0 0 0 0 0
Reduced v/c Ratio 0.63 0.25 0.18 0.25 0.64 0.08

Intersection Summary

Cycle Length: 60

Actuated Cycle Length: 53.2


Natural Cycle: 60

Control Type: Actuated-Uncoordinated

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

Splits and Phases: 1: Riverside Pkwy & N. River Rd

Synchro 11 Report A&R Engineering 23-198 DC BLOX - ATL WEST Data Center on N. River Road (DRI 4112) - Douglasville, GA Page 1

	۶	•	4	†	ļ	4		
Movement	EBL	EBR	NBL	NBT	SBT	SBR		
ane Configurations	7	7	7	↑	↑	7		
raffic Volume (veh/h)	273	112	40	286	727	82		
uture Volume (veh/h)	273	112	40	286	727	82		
tial Q (Qb), veh	0	0	0	0	0	0		
ed-Bike Adj(A_pbT)	1.00	1.00	1.00	•	•	1.00		
arking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00		
ork Zone On Approach	No	1.00	1.00	No	No	1.00		
dj Sat Flow, veh/h/ln	1856	1767	1544	1767	1767	1752		
lj Flow Rate, veh/h	290	0	43	304	773	0		
eak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94		
rcent Heavy Veh, %	3	9	24	9	9	10		
p, veh/h	357		282	995	995			
rive On Green	0.20	0.00	0.56	0.56	0.56	0.00		
t Flow, veh/h	1767	1497	576	1767	1767	1485		
p Volume(v), veh/h	290	0	43	304	773	0		
o Sat Flow(s), veh/h/ln	1767	1497	576	1767	1767	1485		
p Sat Flow(s),ven/n/in Serve(g_s), s	7.3	0.0	2.9	4.3	15.9	0.0		
	7.3	0.0	18.9	4.3	15.9	0.0		
cle Q Clear(g_c), s op In Lane	1.00		1.00	4.3	15.9	1.00		
	357	1.00	282	995	995	1.00		
ne Grp Cap(c), veh/h	0.81							
C Ratio(X)			0.15	0.31	0.78			
ail Cap(c_a), veh/h	509	1.00	394	1338	1338	1.00		
M Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00		
stream Filter(I)	1.00	0.00	1.00	1.00	1.00	0.00		
niform Delay (d), s/veh	17.9	0.0	15.3	5.4	7.9	0.0		
cr Delay (d2), s/veh	6.6	0.0	0.5	0.4	3.3	0.0		
itial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0		
ile BackOfQ(50%),veh/ln	3.3	0.0	0.3	0.9	3.8	0.0		
nsig. Movement Delay, s/veh		0.0	45.0	F 0	14.0	0.0		
Grp Delay(d),s/veh	24.4	0.0	15.8	5.8	11.3	0.0		
Grp LOS	С		В	A	В			
pproach Vol, veh/h	290			347	773			
pproach Delay, s/veh	24.4			7.0	11.3			
pproach LOS	С			Α	В			
mer - Assigned Phs		2				6	8	
hs Duration (G+Y+Rc), s		31.9				31.9	15.0	
hange Period (Y+Rc), s		5.5				5.5	5.5	
ax Green Setting (Gmax), s		35.5				35.5	13.5	
ax Q Clear Time (g_c+l1), s		17.9				20.9	9.3	
reen Ext Time (p_c), s		8.5				3.1	0.3	
· ,		0.0				0.1	0.0	
ersection Summary			40.0					
CM 6th Ctrl Delay			12.9					
CM 6th LOS			В					
otes								

Intersection						
Int Delay, s/veh	1.3					
		EDD	NDI	NDT	CDT	CDD
Movement Configurations	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	7	17	00	4	700	<i></i> 7
Traffic Vol, veh/h	30	17	23	532	792	57
Future Vol, veh/h	30	17	23	532	792	57
Conflicting Peds, #/hr	0	0	0	_ 0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	
Storage Length	0	-	-	-	-	-
Veh in Median Storage		-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	93	93	93	93	93	93
Heavy Vehicles, %	0	0	0	9	9	0
Mvmt Flow	32	18	25	572	852	61
Major/Minor I	Minor2	N	Major1	N	Major2	
Conflicting Flow All	1505	883	913	0	-	0
Stage 1	883	-	-	-	_	-
Stage 2	622	_	_	<u>-</u>	_	_
Critical Hdwy	6.4	6.2	4.1		_	
Critical Hdwy Stg 1	5.4	0.2	7.1	_		
Critical Hdwy Stg 2	5.4	_		_	_	
Follow-up Hdwy	3.5	3.3	2.2	_		_
Pot Cap-1 Maneuver	135	348	755	-	-	-
•	408		100	-	-	-
Stage 1		-	-	-	-	-
Stage 2	539	-	-	-	-	-
Platoon blocked, %	400	240	755	-	-	-
Mov Cap-1 Maneuver	128	348	755	-	-	-
Mov Cap-2 Maneuver	128	-	-	-	-	-
Stage 1	388	-	-	-	-	-
Stage 2	539	-	-	-	-	-
Approach	EB		NB		SB	
HCM Control Delay, s	35.9		0.4		0	
HCM LOS	55.5 E		J.7			
1 TOWN LOO						
Minor Lane/Major Mvm	ıt	NBL	NBT I	EBLn1	SBT	SBR
Capacity (veh/h)		755	-		-	-
HCM Lane V/C Ratio		0.033	-	0.304	-	-
HCM Control Delay (s)		9.9	0	35.9	-	-
HCM Lane LOS		Α	Α	Ε	-	-
HCM 95th %tile Q(veh)		0.1	-	1.2	-	-

	۶	•	1	1	Ţ	4
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	*	7	*	↑	↑	7
Traffic Volume (vph)	34	6	5	580	834	14
Future Volume (vph)	34	6	5	580	834	14
Lane Group Flow (vph)	37	7	5	637	916	15
Turn Type	Prot	Perm	Perm	NA	NA	Perm
Protected Phases	3			6	2	
Permitted Phases		3	6			2
Detector Phase	3	3	6	6	2	2
Switch Phase						
Minimum Initial (s)	5.0	5.0	15.0	15.0	15.0	15.0
Minimum Split (s)	26.5	26.5	28.5	28.5	28.5	28.5
Total Split (s)	26.5	26.5	63.5	63.5	63.5	63.5
Total Split (%)	29.4%	29.4%	70.6%	70.6%	70.6%	70.6%
Yellow Time (s)	3.5	3.5	3.5	3.5	3.5	3.5
All-Red Time (s)	2.0	2.0	2.0	2.0	2.0	2.0
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	5.5	5.5	5.5	5.5	5.5	5.5
Lead/Lag						
Lead-Lag Optimize?						
Recall Mode	None	None	C-Min	C-Min	C-Min	C-Min
v/c Ratio	0.30	0.06	0.02	0.42	0.61	0.02
Control Delay	43.9	21.8	2.8	3.7	5.8	1.3
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	43.9	21.8	2.8	3.7	5.8	1.3
Queue Length 50th (ft)	20	0	1	89	171	0
Queue Length 95th (ft)	49	13	3	166	334	4
Internal Link Dist (ft)	535			899	1249	
Turn Bay Length (ft)		140	315			280
Base Capacity (vph)	329	327	251	1508	1508	791
Starvation Cap Reductn	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0
Reduced v/c Ratio	0.11	0.02	0.02	0.42	0.61	0.02

Intersection Summary

Cycle Length: 90


Actuated Cycle Length: 90

Offset: 0 (0%), Referenced to phase 2:SBT and 6:NBTL, Start of Green

Natural Cycle: 80

Control Type: Actuated-Coordinated

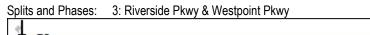
Splits and Phases: 3: Riverside Pkwy & Westpoint Pkwy

Synchro 11 Report A&R Engineering 23-198 DC BLOX - ATL WEST Data Center on N. River Road (DRI 4112) - Douglasville, GA Page 4

Page 5

	۶	*	4	†	↓	1		
Movement	EBL	EBR	NBL	NBT	SBT	SBR		
Lane Configurations	*	7	*	A	†	7		
Traffic Volume (veh/h)	34	6	5	580	834	14		
Future Volume (veh/h)	34	6	5	580	834	14		
Initial Q (Qb), veh	0	0	0	0	0	0		
Ped-Bike Adj(A_pbT)	1.00	1.00	1.00	•	•	1.00		
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00		
Work Zone On Approach	No	1.00	1.00	No	No	1.00		
Adj Sat Flow, veh/h/ln	1485	1648	714	1767	1767	759		
Adj Flow Rate, veh/h	37	0	5	637	916	0		
Peak Hour Factor	0.91	0.91	0.91	0.91	0.91	0.91		
Percent Heavy Veh, %	28	17	80	9	9	77		
Cap, veh/h	47	17	238	1491	1491	11		
Sap, venim Arrive On Green	0.03	0.00	0.84	0.84	0.84	0.00		
Sat Flow, veh/h	1414	1397	233	1767	1767	643		
Grp Volume(v), veh/h	37	0	5	637	916	0		
Grp Sat Flow(s),veh/h/ln	1414	1397	233	1767	1767	643		
Q Serve(g_s), s	2.3	0.0	0.6	7.9	15.1	0.0		
Cycle Q Clear(g_c), s	2.3	0.0	15.7	7.9	15.1	0.0		
Prop In Lane	1.00	1.00	1.00			1.00		
Lane Grp Cap(c), veh/h	47		238	1491	1491			
V/C Ratio(X)	0.78		0.02	0.43	0.61			
Avail Cap(c_a), veh/h	330		238	1491	1491			
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00		
Upstream Filter(I)	1.00	0.00	1.00	1.00	1.00	0.00		
Uniform Delay (d), s/veh	43.2	0.0	4.8	1.7	2.3	0.0		
Incr Delay (d2), s/veh	23.5	0.0	0.2	0.9	1.9	0.0		
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0		
%ile BackOfQ(50%),veh/ln	1.1	0.0	0.0	0.7	1.4	0.0		
Unsig. Movement Delay, s/veh								
LnGrp Delay(d),s/veh	66.7	0.0	5.0	2.6	4.2	0.0		
LnGrp LOS	Е		Α	Α	Α			
Approach Vol, veh/h	37			642	916			
Approach Delay, s/veh	66.7			2.6	4.2			
Approach LOS	E			A	Α			
Timer - Assigned Phs		2				6	8	
Phs Duration (G+Y+Rc), s		81.5				81.5	8.5	
Change Period (Y+Rc), s		5.5				5.5	5.5	
Max Green Setting (Gmax), s		58.0				58.0	21.0	
Max Q Clear Time (g_c+l1), s		17.1				17.7	4.3	
Green Ext Time (p_c), s		17.0				9.8	0.1	
Intersection Summary								
HCM 6th Ctrl Delay			5.0					
HCM 6th LOS			3.0 A					
			^					
Notes								

Unsignalized Delay for [EBR, SBR] is excluded from calculations of the approach delay and intersection delay.


Future "Build" Intersections Analysis

Intersection						
Int Delay, s/veh	12.8					
		EDD	NDI	NDT	CDT	CDD
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	110	76	\	700	207	104
Traffic Vol, veh/h	112 112	76 76	79 79	792	367 367	164 164
Future Vol, veh/h	0	0	0	792 0	367	164
Conflicting Peds, #/hr						
Sign Control RT Channelized	Stop -	Stop Yield	Free	Free	Free	Free
	0	r ieiu	255		-	Yield 270
Storage Length Veh in Median Storage		_	200	0	0	270
	e, # 0 0			0	0	
Grade, %		- 02	93	93	93	93
Peak Hour Factor	93	93				
Heavy Vehicles, %	16	20	11	9	9	6
Mvmt Flow	120	82	85	852	395	176
Major/Minor	Minor2	1	Major1	N	Major2	
Conflicting Flow All	1417	395	395	0	-	0
Stage 1	395	-	-	-	_	_
Stage 2	1022	_	_	_	_	_
Critical Hdwy	6.56	6.4	4.21	_	_	_
Critical Hdwy Stg 1	5.56	-	-	_	_	_
Critical Hdwy Stg 2	5.56	_	_	_	_	_
Follow-up Hdwy	3.644	3 48	2.299	_	_	_
Pot Cap-1 Maneuver	141	617	1116	_	_	_
Stage 1	651	-	-	_	_	_
Stage 2	327	_	_	_	_	_
Platoon blocked, %	021			_	_	_
Mov Cap-1 Maneuver	130	617	1116	_	_	_
Mov Cap-2 Maneuver	130	-	-	_	_	_
Stage 1	602	_	_	_	_	
Stage 2	327	_		_	_	
Stage 2	321	_	_	_	_	
Approach	EB		NB		SB	
HCM Control Delay, s	104.7		0.8		0	
HCM LOS	F					
Minor Lane/Major Mvm	ot .	NBL	NDT	EBLn1	SBT	SBR
	IL				301	ODIN
Capacity (veh/h)		1116 0.076	-	207 0.977	-	
HCM Lane V/C Ratio		8.5		104.7	-	-
$H(\cdot)//(\cdot)$		0.0	-	104.7	-	_
HCM Lang LOS				С		
HCM Control Delay (s) HCM Lane LOS HCM 95th %tile Q(veh)		A 0.2	-	F 8.4	-	-

Intersection						
Int Delay, s/veh	3					
		EDD	NDI	NDT	CDT	CDD
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	Y	0.4	4.4	4	♣	20
Traffic Vol, veh/h	57	34	14	890	497	32
Future Vol, veh/h	57	34	14	890	497	32
Conflicting Peds, #/hr	0	0	_ 0	_ 0	_ 0	_ 0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage	e, # 0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	93	93	93	93	93	93
Heavy Vehicles, %	2	2	8	9	9	3
Mvmt Flow	61	37	15	957	534	34
Majay/Minay	N / : = - O		14-:1		4-:0	
	Minor2		Major1		//ajor2	
Conflicting Flow All	1538	551	568	0	-	0
Stage 1	551	-	-	-	-	-
Stage 2	987	-	-	-	-	-
Critical Hdwy	6.42	6.22	4.18	-	-	-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
Follow-up Hdwy	3.518	3.318	2.272	-	-	-
Pot Cap-1 Maneuver	127	534	975	-	-	-
Stage 1	577	-	-	-	-	-
Stage 2	361	-	_	-	-	-
Platoon blocked, %				-	-	_
Mov Cap-1 Maneuver	123	534	975	_	_	_
Mov Cap-2 Maneuver	123	-	-	_	_	_
Stage 1	558	_	_	_	_	_
Stage 2	361	_	<u>_</u>	_	_	_
Olage 2	301					
Approach	EB		NB		SB	
HCM Control Delay, s	49.9		0.1		0	
HCM LOS	Е					
Mineral and /MA in P.4	.1	NDI	NDT	EDL 4	ODT	ODD
Minor Lane/Major Mvm	11	NBL		EBLn1	SBT	SBR
Capacity (veh/h)		975	-		-	-
HCM Lane V/C Ratio		0.015		0.566	-	-
HCM Control Delay (s)		8.8	0	49.9	-	-
HCM Lane LOS		Α	Α	E	-	-
HCM 95th %tile Q(veh))	0	-	3	-	-

	۶	•	4	†	ļ	4
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	*	7	*	↑	†	7
Traffic Volume (vph)	16	6	14	1052	502	33
Future Volume (vph)	16	6	14	1052	502	33
Lane Group Flow (vph)	17	6	15	1107	528	35
Turn Type	Prot	Perm	Perm	NA	NA	Perm
Protected Phases	3			6	2	
Permitted Phases		3	6			2
Detector Phase	3	3	6	6	2	2
Switch Phase						
Minimum Initial (s)	5.0	5.0	15.0	15.0	15.0	15.0
Minimum Split (s)	26.5	26.5	28.5	28.5	28.5	28.5
Total Split (s)	26.5	26.5	63.5	63.5	63.5	63.5
Total Split (%)	29.4%	29.4%	70.6%	70.6%	70.6%	70.6%
Yellow Time (s)	3.5	3.5	3.5	3.5	3.5	3.5
All-Red Time (s)	2.0	2.0	2.0	2.0	2.0	2.0
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	5.5	5.5	5.5	5.5	5.5	5.5
Lead/Lag						
Lead-Lag Optimize?						
Recall Mode	None	None	Min	Min	Min	Min
v/c Ratio	0.17	0.06	0.02	0.70	0.33	0.03
Control Delay	40.2	23.8	1.9	6.8	2.3	0.8
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	40.2	23.8	1.9	6.8	2.3	0.8
Queue Length 50th (ft)	7	0	0	0	0	0
Queue Length 95th (ft)	29	12	5	523	114	5
Internal Link Dist (ft)	535			899	1249	
Turn Bay Length (ft)		140	315			280
Base Capacity (vph)	319	309	739	1571	1571	1364
Starvation Cap Reductn	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0
Reduced v/c Ratio	0.05	0.02	0.02	0.70	0.34	0.03
Intersection Summary						
Cycle Length: 90						
Actuated Cycle Length: 76.1						
Natural Cycle: 90						
Tatalal Cyolo. 50						

Control Type: Actuated-Uncoordinated

A&R Engineering Synchro 11 Report 23-198 DC BLOX - ATL WEST Data Center on N. River Road (DRI 4112) - Douglasville, GA Page 3

	۶	•	1	†	ļ	4	
Movement	EBL	EBR	NBL	NBT	SBT	SBR	
ane Configurations	*	7	7	^	^	7	
Fraffic Volume (veh/h)	16	6	14	1052	502	33	
-uture Volume (veh/h)	16	6	14	1052	502	33	
nitial Q (Qb), veh	0	0	0	0	0	0	
Ped-Bike Adj(A_pbT)	1.00	1.00	1.00			1.00	
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	
Work Zone On Approach	No			No	No		
Adj Sat Flow, veh/h/ln	1011	1159	1781	1767	1767	1796	
Adj Flow Rate, veh/h	17	0	15	1107	528	0	
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	
Percent Heavy Veh, %	60	50	8	9	9	7	
Cap, veh/h	20		705	1386	1386		
Arrive On Green	0.02	0.00	0.78	0.78	0.78	0.00	
Sat Flow, veh/h	963	982	834	1767	1767	1522	
Grp Volume(v), veh/h	17	0	15	1107	528	0	
Grp Sat Flow(s), veh/h/ln	963	982	834	1767	1767	1522	
Q Serve(g_s), s	1.0	0.0	0.3	20.4	5.2	0.0	
Cycle Q Clear(g_c), s	1.0	0.0	5.5	20.4	5.2	0.0	
Prop In Lane	1.00	1.00	1.00	20.1	0.2	1.00	
_ane Grp Cap(c), veh/h	20	1.00	705	1386	1386	1.00	
V/C Ratio(X)	0.85		0.02	0.80	0.38		
Avail Cap(c_a), veh/h	358		907	1815	1815		
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	
Jpstream Filter(I)	1.00	0.00	1.00	1.00	1.00	0.00	
Jniform Delay (d), s/veh	27.6	0.0	2.7	3.5	1.9	0.0	
Incr Delay (d2), s/veh	59.3	0.0	0.0	2.9	0.4	0.0	
nitial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	
%ile BackOfQ(50%),veh/ln	0.5	0.0	0.0	1.1	0.1	0.0	
Unsig. Movement Delay, s/veh		3.0	3.0	1.1	J. 1	3.0	
_nGrp Delay(d),s/veh	86.9	0.0	2.7	6.4	2.2	0.0	
inGrp LOS	F	3.0	Α	А	Α.Ε	3.0	
Approach Vol, veh/h	17		/\	1122	528		
Approach Delay, s/veh	86.9			6.4	2.2		
Approach LOS	60.9 F			0.4 A	Z.Z A		
••				A	A		
Timer - Assigned Phs		2				6	8
Phs Duration (G+Y+Rc), s		49.8				49.8	6.7
Change Period (Y+Rc), s		5.5				5.5	5.5
Max Green Setting (Gmax), s		58.0				58.0	21.0
Max Q Clear Time (g_c+I1), s		7.2				22.4	3.0
Green Ext Time (p_c), s		7.5				21.9	0.0
ntersection Summary							
HCM 6th Ctrl Delay			5.9				
HCM 6th LOS			А				
Notes							

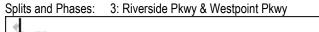
A&R Engineering Synchro 11 Report 23-198 DC BLOX - ATL WEST Data Center on N. River Road (DRI 4112) - Douglasville, GA Page 4

Intersection						
Int Delay, s/veh	3.7					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
		LDR	NDL			אמט
Lane Configurations	Y	.00	20	વ	}	0
Traffic Vol, veh/h	0	29	36	40	34	0
Future Vol, veh/h	0	29	36	40	34	0
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storag	e, # 0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2
Mymt Flow	0	32	39	43	37	0
IVIVIIIL FIUW	U	32	39	43	31	U
Major/Minor	Minor2		Major1	N	/lajor2	
Conflicting Flow All	158	37	37	0		0
Stage 1	37	-	-	-	_	_
Stage 2	121	_	_	_	_	_
	6.42	6.22	4.12			
Critical Hdwy			4.12	-	-	-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	-		-	-	-
Follow-up Hdwy		3.318		-	-	-
Pot Cap-1 Maneuver	833	1035	1574	-	-	-
Stage 1	985	-	-	-	-	-
Stage 2	904	-	-	-	-	-
Platoon blocked, %				-	-	-
Mov Cap-1 Maneuver	812	1035	1574	_	_	_
Mov Cap-2 Maneuver		-	-	_	_	_
Stage 1	960	_	_	_	_	_
Stage 2	904	_		_	-	_
Staye 2	904	-	-	_	-	-
Approach	EB		NB		SB	
HCM Control Delay, s			3.5		0	
	Α		0.0		U	
	A					
HCM LOS						
HCM LOS						
	nt	NBL	NBT	EBLn1	SBT	SBR
Minor Lane/Major Mvr	nt	NBL 1574		EBLn1 1035	SBT -	SBR -
Minor Lane/Major Mvr Capacity (veh/h)	nt	1574	-	1035	-	-
Minor Lane/Major Mvr Capacity (veh/h) HCM Lane V/C Ratio		1574 0.025	-	1035 0.03	-	-
Minor Lane/Major Mvr Capacity (veh/h) HCM Lane V/C Ratio HCM Control Delay (s		1574 0.025 7.3	- - 0	1035 0.03 8.6	- - -	- - -
Minor Lane/Major Mvr Capacity (veh/h) HCM Lane V/C Ratio)	1574 0.025	-	1035 0.03	-	-

Intersection								
Int Delay, s/veh	137.8							
Movement	EBL	EBR	NBL	NBT	SBT	SBR		
Lane Configurations	Y	LDIT	ሻ	↑	<u> </u>	7		
Traffic Vol, veh/h	306	134	49	286	727	96		
Future Vol, veh/h	306	134	49	286	727	96		
Conflicting Peds, #/hr	0	0	0	0	0	0		
Sign Control	Stop	Stop	Free	Free	Free	Free		
RT Channelized	-	Yield	_	None	-	Yield		
Storage Length	0	-	255	-	-	270		
/eh in Median Storage	e,# 0	_		0	0			
Grade, %	0	_	_	0	0	-		
Peak Hour Factor	94	94	94	94	94	94		
Heavy Vehicles, %	3	9	24	9	9	10		
Nymt Flow	326	143	52	304	773	102		
	J_J_		Ų.		., ,			
Major/Minor	Minor2		Major1	N	//ajor2			
Conflicting Flow All	1181	773	773	0	- najoiz	0		
Stage 1	773	-	-	-	-	-		
Stage 2	408	_	-	-	-	-		
Critical Hdwy	6.43	6.29	4.34	_				
ritical Hdwy Stg 1	5.43	0.25	4.54	_		-		
ritical Hdwy Stg 2	5.43	-	_	_				
ollow-up Hdwy		3.381		_		-		
ot Cap-1 Maneuver	~ 209	388	752	-		-		
Stage 1	454	300	132	_		_		
Stage 2	669	-	-	-	-	-		
latoon blocked, %	009	-	-	-	-	-		
Nov Cap-1 Maneuver	~ 105	388	752	-		-		
Nov Cap-1 Maneuver		300	132	-	-	-		
Stage 1	423	-	-	-	-	-		
Stage 2	669	-	-	-	-	-		
Slaye Z	009	<u>-</u>	-	<u>-</u>		<u>-</u>		
			NID		0.0			
Approach	EB		NB		SB			
HCM Control Delay, s			1.5		0			
HCM LOS	F							
Minor Lane/Major Mvr	nt	NBL	NBT	EBLn1	SBT	SBR		
Capacity (veh/h)		752	-	234	-	-		
ICM Lane V/C Ratio		0.069	-	2	-	-		
HCM Control Delay (s)	10.1	-\$	499.5	-	-		
ICM Lane LOS		В	-	F	-	-		
HCM 95th %tile Q(veh	n)	0.2	-	34.4	-	-		
Notes								
: Volume exceeds ca	pacity	\$: De	elav exc	eeds 30)0s	+: Comr	outation Not Defined	*: All major volume in platoon
	, sony	φ. υ	J	3545 00		. 55111		

Intersection						
Int Delay, s/veh	1.3					
		E55	ND	NDT	ODT	000
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	A			ન	4	
Traffic Vol, veh/h	30	17	23	565	806	57
Future Vol, veh/h	30	17	23	565	806	57
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storag	e,# 0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	94	94	94	94	94	94
Heavy Vehicles, %	2	2	2	9	9	2
Mvmt Flow	32	18	24	601	857	61
				_		
Major/Minor	Minor2		Major1		/lajor2	
Conflicting Flow All	1537	888	918	0	-	0
Stage 1	888	-	-	-	-	-
Stage 2	649	-	-	_	-	-
Critical Hdwy	6.42	6.22	4.12	-	-	-
Critical Hdwy Stg 1	5.42	-	_	-	-	-
Critical Hdwy Stg 2	5.42	_	-	-	_	-
Follow-up Hdwy		3.318	2.218	-	-	-
Pot Cap-1 Maneuver	128	343	743	_	_	-
Stage 1	402	-		-	_	_
Stage 2	520	_	_	_	_	_
Platoon blocked, %	320			_	_	_
Mov Cap-1 Maneuver	122	343	743			
Mov Cap-1 Maneuver		J4J -	143		_	_
Stage 1	383	-	-	_	-	-
•		-	-	-	-	-
Stage 2	520	-	-	-	-	-
Approach	EB		NB		SB	
HCM Control Delay, s	37.7		0.4		0	
HCM LOS	E					
	_					
Minor Lane/Major Mvi	nt	NBL	NBT	EBLn1	SBT	SBR
Capacity (veh/h)		743	-		-	-
HCM Lane V/C Ratio		0.033	-	0.314	-	-
HCM Control Delay (s	5)	10	0	37.7	-	-
HCM Lane LOS		В	Α	Е	-	-
HCM 95th %tile Q(veh	1)	0.1	-	1.3	-	-
.,	,					

	•	•	4	†	ļ	4
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	7	7	7	^	†	7
Traffic Volume (vph)	34	6	5	613	848	14
Future Volume (vph)	34	6	5	613	848	14
Lane Group Flow (vph)	37	7	5	674	932	15
Turn Type	Prot	Perm	Perm	NA	NA	Perm
Protected Phases	3			6	2	
Permitted Phases		3	6			2
Detector Phase	3	3	6	6	2	2
Switch Phase						
Minimum Initial (s)	5.0	5.0	15.0	15.0	15.0	15.0
Minimum Split (s)	26.5	26.5	28.5	28.5	28.5	28.5
Total Split (s)	26.5	26.5	53.5	53.5	53.5	53.5
Total Split (%)	33.1%	33.1%	66.9%	66.9%	66.9%	66.9%
Yellow Time (s)	3.5	3.5	3.5	3.5	3.5	3.5
All-Red Time (s)	2.0	2.0	2.0	2.0	2.0	2.0
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	5.5	5.5	5.5	5.5	5.5	5.5
Lead/Lag						
Lead-Lag Optimize?						
Recall Mode	None	None	Min	Min	Min	Min
v/c Ratio	0.21	0.04	0.02	0.46	0.63	0.02
Control Delay	32.1	17.3	3.2	4.6	7.2	1.6
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	32.1	17.3	3.2	4.6	7.2	1.6
Queue Length 50th (ft)	17	0	1	96	174	0
Queue Length 95th (ft)	39	11	3	183	358	4
Internal Link Dist (ft)	535			899	1249	
Turn Bay Length (ft)		140	315			280
Base Capacity (vph)	516	509	222	1468	1468	770
Starvation Cap Reductn	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0
Reduced v/c Ratio	0.07	0.01	0.02	0.46	0.63	0.02
Intersection Summary						


Intersection Summary

Cycle Length: 80

Actuated Cycle Length: 62.1

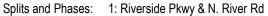
Natural Cycle: 80

Control Type: Actuated-Uncoordinated

Synchro 11 Report A&R Engineering 23-198 DC BLOX - ATL WEST Data Center on N. River Road (DRI 4112) - Douglasville, GA Page 3

	۶	•	4	†	ļ	1	
Movement	EBL	EBR	NBL	NBT	SBT	SBR	
Lane Configurations	7	7	7	^	↑	7	
Traffic Volume (veh/h)	34	6	5	613	848	14	
Future Volume (veh/h)	34	6	5	613	848	14	
nitial Q (Qb), veh	0	0	0	0	0	0	
Ped-Bike Adj(A_pbT)	1.00	1.00	1.00	•	-	1.00	
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	
Work Zone On Approach	No			No	No		
Adj Sat Flow, veh/h/ln	1485	1648	714	1767	1767	759	
Adj Flow Rate, veh/h	37	0	5	674	932	0	
Peak Hour Factor	0.91	0.91	0.91	0.91	0.91	0.91	
Percent Heavy Veh, %	28	17	80	9	9	77	
Cap, veh/h	58	.,	251	1258	1258	,,	
Arrive On Green	0.04	0.00	0.71	0.71	0.71	0.00	
Sat Flow, veh/h	1414	1397	229	1767	1767	643	
	37	0	5	674	932	043	
Grp Volume(v), veh/h							
Grp Sat Flow(s), veh/h/ln	1414	1397	229	1767	1767	643	
Q Serve(g_s), s	1.1	0.0	0.6	7.9	14.3	0.0	
Cycle Q Clear(g_c), s	1.1	0.0	14.9	7.9	14.3	0.0	
Prop In Lane	1.00	1.00	1.00	4050	4050	1.00	
Lane Grp Cap(c), veh/h	58		251	1258	1258		
V/C Ratio(X)	0.63		0.02	0.54	0.74		
Avail Cap(c_a), veh/h	666	4.00	334	1901	1901	4.00	
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	
Upstream Filter(I)	1.00	0.00	1.00	1.00	1.00	0.00	
Uniform Delay (d), s/veh	21.1	0.0	8.5	3.0	3.9	0.0	
Incr Delay (d2), s/veh	10.9	0.0	0.1	0.8	1.9	0.0	
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	
%ile BackOfQ(50%),veh/ln	0.5	0.0	0.0	0.3	0.7	0.0	
Unsig. Movement Delay, s/veh							
LnGrp Delay(d),s/veh	31.9	0.0	8.5	3.7	5.8	0.0	
LnGrp LOS	С		Α	Α	Α		
Approach Vol, veh/h	37			679	932		
Approach Delay, s/veh	31.9			3.8	5.8		
Approach LOS	С			Α	Α		
Timer - Assigned Phs		2				6	8
Phs Duration (G+Y+Rc), s		37.3				37.3	7.3
Change Period (Y+Rc), s		5.5				5.5	7.5 5.5
Max Green Setting (Gmax), s		48.0				48.0	21.0
• ():		16.3				16.9	3.1
Max Q Clear Time (g_c+l1), s						9.7	
Green Ext Time (p_c), s		15.4				9.7	0.1
Intersection Summary							
HCM 6th Ctrl Delay			5.5				
HCM 6th LOS			Α				
Notes							

Intersection						
Int Delay, s/veh	4					
-		EDD	NDI	NDT	CDT	CDD
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	¥	20	40	4	13	^
Traffic Vol, veh/h	0	39	16	19	42	0
Future Vol, veh/h	0	39	16	19	42	0
Conflicting Peds, #/hr	0	0	_ 0	_ 0	0	_ 0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-		-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage		-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	0	42	17	21	46	0
Major/Minor I	Minor2		Major1	N	//ajor2	
Conflicting Flow All	101	46	46	0	-	0
Stage 1	46	-	-	-	_	-
Stage 2	55	_	_	_	_	_
Critical Hdwy	6.42	6.22	4.12	_	_	_
Critical Hdwy Stg 1	5.42	0.22	4.12	-	-	-
	5.42	-	_	-		-
Critical Hdwy Stg 2			2 240	-	-	-
Follow-up Hdwy	3.518		2.218	-	-	-
Pot Cap-1 Maneuver	898	1023	1562	-	-	-
Stage 1	976	-	-	-	-	-
Stage 2	968	-	-	-	-	-
Platoon blocked, %		1000	1=00	-	-	-
Mov Cap-1 Maneuver	888	1023	1562	-	-	-
Mov Cap-2 Maneuver	888	-	-	-	-	-
Stage 1	965	-	-	-	-	-
Stage 2	968	-	-	-	-	-
Approach	EB		NB		SB	
HCM Control Delay, s	8.7		3.4		0	
HCM LOS	Α		О.Т		U	
TIOW LOO						
Minor Lane/Major Mvm	nt	NBL		EBLn1	SBT	SBR
Capacity (veh/h)		1562	-	1023	-	-
HCM Lane V/C Ratio		0.011	-	0.041	-	-
HCM Control Delay (s)		7.3	0	8.7	-	-
HCM Lane LOS		Α	Α	Α	-	-
HCM 95th %tile Q(veh))	0	-	0.1	-	-


Future "Build" Intersections Analysis with Improvements

	٠	•	4	1	Ţ	4
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	*	7	*	↑	↑	7
Traffic Volume (vph)	112	76	79	792	367	164
Future Volume (vph)	112	76	79	792	367	164
Lane Group Flow (vph)	120	82	85	852	395	176
Turn Type	Prot	Perm	pm+pt	NA	NA	Perm
Protected Phases	3		1	6	2	
Permitted Phases		3	6			2
Detector Phase	3	3	1	6	2	2
Switch Phase						
Minimum Initial (s)	5.0	5.0	5.0	15.0	15.0	15.0
Minimum Split (s)	15.0	15.0	15.0	28.5	28.5	28.5
Total Split (s)	15.0	15.0	15.0	45.0	30.0	30.0
Total Split (%)	25.0%	25.0%	25.0%	75.0%	50.0%	50.0%
Yellow Time (s)	3.5	3.5	3.5	3.5	3.5	3.5
All-Red Time (s)	2.0	2.0	2.0	2.0	2.0	2.0
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	5.5	5.5	5.5	5.5	5.5	5.5
Lead/Lag			Lead		Lag	Lag
Lead-Lag Optimize?			Yes		Yes	Yes
Recall Mode	None	None	None	Min	Min	Min
v/c Ratio	0.47	0.28	0.14	0.69	0.39	0.18
Control Delay	28.9	9.4	4.4	10.4	12.1	2.7
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	28.9	9.4	4.4	10.4	12.1	2.7
Queue Length 50th (ft)	36	0	9	168	95	0
Queue Length 95th (ft)	85	32	21	303	170	29
Internal Link Dist (ft)	583			1053	851	
Turn Bay Length (ft)		150	255			270
Base Capacity (vph)	300	326	652	1359	1018	963
Starvation Cap Reductn	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0
Reduced v/c Ratio	0.40	0.25	0.13	0.63	0.39	0.18
Intersection Summary						
Cycle Length: 60						
Cycle Length. 00	_					

Actuated Cycle Length: 51.2

Natural Cycle: 60

Control Type: Actuated-Uncoordinated

A&R Engineering Synchro 11 Report 23-198 DC BLOX - ATL WEST Data Center on N. River Road (DRI 4112) - Douglasville, GA Page 1

	۶	•	4	†	ļ	4	
Movement	EBL	EBR	NBL	NBT	SBT	SBR	
Lane Configurations	*	7	7	↑	^	7	
Traffic Volume (veh/h)	112	76	79	792	367	164	
Future Volume (veh/h)	112	76	79	792	367	164	
Initial Q (Qb), veh	0	0	0	0	0	0	
Ped-Bike Adj(A_pbT)	1.00	1.00	1.00			1.00	
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	
Work Zone On Approach	No			No	No		
Adj Sat Flow, veh/h/ln	1663	1604	1737	1767	1767	1811	
Adj Flow Rate, veh/h	120	0	85	852	395	0	
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93	
Percent Heavy Veh, %	16	20	11	9	9	6	
Cap, veh/h	148		552	1143	782		
Arrive On Green	0.09	0.00	0.07	0.65	0.44	0.00	
Sat Flow, veh/h	1584	1359	1654	1767	1767	1535	
Grp Volume(v), veh/h	120	0	85	852	395	0	
Grp Sat Flow(s), veh/h/ln	1584	1359	1654	1767	1767	1535	
Q Serve(g_s), s	3.2	0.0	1.0	14.0	6.8	0.0	
Cycle Q Clear(g_c), s	3.2	0.0	1.0	14.0	6.8	0.0	
Prop In Lane	1.00	1.00	1.00		0.0	1.00	
Lane Grp Cap(c), veh/h	148	1.00	552	1143	782		
V/C Ratio(X)	0.81		0.15	0.75	0.51		
Avail Cap(c_a), veh/h	355		799	1645	1020		
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	
Upstream Filter(I)	1.00	0.00	1.00	1.00	1.00	0.00	
Uniform Delay (d), s/veh	18.8	0.0	5.2	5.1	8.5	0.0	
Incr Delay (d2), s/veh	9.9	0.0	0.1	2.2	1.1	0.0	
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	
%ile BackOfQ(50%),veh/ln	1.4	0.0	0.2	1.7	1.8	0.0	
Unsig. Movement Delay, s/veh							
LnGrp Delay(d),s/veh	28.8	0.0	5.4	7.3	9.6	0.0	
LnGrp LOS	C		A	A	A		
Approach Vol, veh/h	120			937	395		
Approach Delay, s/veh	28.8			7.1	9.6		
Approach LOS	C			A	A		
		0				_	_
Timer - Assigned Phs	1	2				6	8
Phs Duration (G+Y+Rc), s	8.7	24.3				32.9	9.5
Change Period (Y+Rc), s	5.5	5.5				5.5	5.5
Max Green Setting (Gmax), s	9.5	24.5				39.5	9.5
Max Q Clear Time (g_c+I1), s	3.0	8.8				16.0	5.2
Green Ext Time (p_c), s	0.1	3.5				11.5	0.1
ntersection Summary							
HCM 6th Ctrl Delay			9.6				
HCM 6th LOS			Α				
Notes							

Unsignalized Delay for [EBR, SBR] is excluded from calculations of the approach delay and intersection delay.

A&R Engineering
23-198 DC BLOX - ATL WEST Data Center on N. River Road (DRI 4112) - Douglasville, GA
Synchro 11 Report
Page 2

Intersection Int Delay, s/veh	3					
-		EDD	NDI	NDT	CDT	CDD
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	Y	0.4	4.4	4	₽	0.0
Traffic Vol, veh/h	57	34	14	890	497	32
Future Vol, veh/h	57	34	14	890	497	32
Conflicting Peds, #/hr	0	0	_ 0	_ 0	_ 0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage	, # 0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	93	93	93	93	93	93
Heavy Vehicles, %	2	2	8	9	9	3
Mvmt Flow	61	37	15	957	534	34
Major/Minor I	Minor2		Major1		/aiar2	
			Major1		//ajor2	
Conflicting Flow All	1538	551	568	0	-	0
Stage 1	551	-	-	-	-	-
Stage 2	987	-	-	-	-	-
Critical Hdwy	6.42	6.22	4.18	-	-	-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
Follow-up Hdwy	3.518	3.318	2.272	-	-	-
Pot Cap-1 Maneuver	127	534	975	-	-	-
Stage 1	577	-	-	-	-	-
Stage 2	361	-	-	-	-	-
Platoon blocked, %				-	-	-
Mov Cap-1 Maneuver	123	534	975	-	-	-
Mov Cap-2 Maneuver	123	-	-	-	-	-
	558	_	-	_	-	-
Stage 1	- 550					
Stage 1 Stage 2		_	_	-	-	-
Stage 2	361	-	-	-	-	-
Stage 2	361	-	-	-		-
Stage 2 Approach	361 EB	-	- NB	-	SB	-
Stage 2 Approach HCM Control Delay, s	361 EB 49.9	-	NB 0.1	-		
Stage 2 Approach	361 EB				SB	
Stage 2 Approach HCM Control Delay, s	361 EB 49.9				SB	
Stage 2 Approach HCM Control Delay, s HCM LOS	361 EB 49.9 E		0.1	- FRI n1	SB 0	SBR
Stage 2 Approach HCM Control Delay, s HCM LOS Minor Lane/Major Mvm	361 EB 49.9 E	NBL	0.1	EBLn1	SB 0 SBT	SBR
Stage 2 Approach HCM Control Delay, s HCM LOS Minor Lane/Major Mvm Capacity (veh/h)	361 EB 49.9 E	NBL 975	0.1 NBT	173	SB 0 SBT	-
Stage 2 Approach HCM Control Delay, s HCM LOS Minor Lane/Major Mvm Capacity (veh/h) HCM Lane V/C Ratio	361 EB 49.9 E	NBL 975 0.015	0.1 NBT	173 0.566	SB 0	-
Stage 2 Approach HCM Control Delay, s HCM LOS Minor Lane/Major Mvm Capacity (veh/h) HCM Lane V/C Ratio HCM Control Delay (s)	361 EB 49.9 E	NBL 975 0.015 8.8	0.1 NBT 0	173 0.566 49.9	SBT -	- - -
Stage 2 Approach HCM Control Delay, s HCM LOS Minor Lane/Major Mvm Capacity (veh/h) HCM Lane V/C Ratio	361 EB 49.9 E	NBL 975 0.015	0.1 NBT	173 0.566	SB 0	-

A&R Engineering 23-198 DC BLOX - ATL WEST Data Center on N. River Road (DRI 4112) - Douglasville, GA Synchro 11 Report Page 3

3: Riverside Pkwy & Westpoint Pkwy

	۶	•	1	†	ļ	4
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	*	7	*	^	^	7
Traffic Volume (vph)	16	6	14	1052	502	33
Future Volume (vph)	16	6	14	1052	502	33
Lane Group Flow (vph)	17	6	15	1107	528	35
Turn Type	Prot	Perm	Perm	NA	NA	Perm
Protected Phases	3			6	2	
Permitted Phases		3	6			2
Detector Phase	3	3	6	6	2	2
Switch Phase						
Minimum Initial (s)	5.0	5.0	15.0	15.0	15.0	15.0
Minimum Split (s)	26.5	26.5	28.5	28.5	28.5	28.5
Total Split (s)	26.5	26.5	63.5	63.5	63.5	63.5
Total Split (%)	29.4%	29.4%	70.6%	70.6%	70.6%	70.6%
Yellow Time (s)	3.5	3.5	3.5	3.5	3.5	3.5
All-Red Time (s)	2.0	2.0	2.0	2.0	2.0	2.0
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	5.5	5.5	5.5	5.5	5.5	5.5
Lead/Lag						
Lead-Lag Optimize?						
Recall Mode	None	None	Min	Min	Min	Min
v/c Ratio	0.17	0.06	0.02	0.70	0.33	0.03
Control Delay	40.2	23.8	1.9	6.8	2.3	0.8
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	40.2	23.8	1.9	6.8	2.3	0.8
Queue Length 50th (ft)	7	0	0	0	0	0
Queue Length 95th (ft)	29	12	5	523	114	5
Internal Link Dist (ft)	535			899	1249	
Turn Bay Length (ft)		140	315			280
Base Capacity (vph)	319	309	739	1571	1571	1364
Starvation Cap Reductn	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0
Reduced v/c Ratio	0.05	0.02	0.02	0.70	0.34	0.03
I-tti O						

Intersection Summary

Cycle Length: 90

Actuated Cycle Length: 76.1

Natural Cycle: 90

Control Type: Actuated-Uncoordinated

Synchro 11 Report A&R Engineering 23-198 DC BLOX - ATL WEST Data Center on N. River Road (DRI 4112) - Douglasville, GA Page 4

	۶	*	4	†	Ţ	1		
Movement	EBL	EBR	NBL	NBT	SBT	SBR		
Lane Configurations	ሻ	7	*	†		7		
Traffic Volume (veh/h)	16	6	14	1052	502	33		
Future Volume (veh/h)	16	6	14	1052	502	33		
Initial Q (Qb), veh	0	0	0	0	0	0		
Ped-Bike Adj(A_pbT)	1.00	1.00	1.00	•	•	1.00		
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00		
Work Zone On Approach	No	1.00	1.00	No	No	1.00		
Adj Sat Flow, veh/h/ln	1011	1159	1781	1767	1767	1796		
Adj Flow Rate, veh/h	17	0	15	1107	528	0		
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95		
Percent Heavy Veh, %	60	50	8	9	9	7		
Cap, veh/h	20	30	705	1386	1386	ı		
Arrive On Green	0.02	0.00	0.78	0.78	0.78	0.00		
Sat Flow, veh/h	963	982	834	1767	1767	1522		
Grp Volume(v), veh/h	17	0	15	1107	528	1500		
Grp Sat Flow(s),veh/h/ln	963	982	834	1767	1767	1522		
Q Serve(g_s), s	1.0	0.0	0.3	20.4	5.2	0.0		
Cycle Q Clear(g_c), s	1.0	0.0	5.5	20.4	5.2	0.0		
Prop In Lane	1.00	1.00	1.00	1000	1000	1.00		
Lane Grp Cap(c), veh/h	20		705	1386	1386			
V/C Ratio(X)	0.85		0.02	0.80	0.38			
Avail Cap(c_a), veh/h	358		907	1815	1815			
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00		
Upstream Filter(I)	1.00	0.00	1.00	1.00	1.00	0.00		
Uniform Delay (d), s/veh	27.6	0.0	2.7	3.5	1.9	0.0		
Incr Delay (d2), s/veh	59.3	0.0	0.0	2.9	0.4	0.0		
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0		
%ile BackOfQ(50%),veh/ln	0.5	0.0	0.0	1.1	0.1	0.0		
Unsig. Movement Delay, s/veh								
LnGrp Delay(d),s/veh	86.9	0.0	2.7	6.4	2.2	0.0		
LnGrp LOS	F		Α	Α	Α			
Approach Vol, veh/h	17			1122	528			
Approach Delay, s/veh	86.9			6.4	2.2			
Approach LOS	F			Α	Α			
Timer - Assigned Phs		2				6	8	
Phs Duration (G+Y+Rc), s		49.8				49.8	6.7	
Change Period (Y+Rc), s		5.5				5.5	5.5	
Max Green Setting (Gmax), s		58.0				58.0	21.0	
Max Q Clear Time (g c+l1), s		7.2				22.4	3.0	
Green Ext Time (p_c), s		7.5				21.9	0.0	
" = /-		1.5				21.9	U.U	
Intersection Summary			F 0					
HCM 6th Ctrl Delay			5.9					
HCM 6th LOS			Α					
Notes								

Unsignalized Delay for [EBR, SBR] is excluded from calculations of the approach delay and intersection delay.

Intersection						
Int Delay, s/veh	3.7					
		EDD.	NDI	NDT	ODT	ODD
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	Y			4	Þ	
Traffic Vol, veh/h	0	29	36	40	34	0
Future Vol, veh/h	0	29	36	40	34	0
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage	e, # 0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	0	32	39	43	37	0
		02	00	10	Ų,	
	Minor2		Major1	١	/lajor2	
Conflicting Flow All	158	37	37	0	-	0
Stage 1	37	-	-	-	-	-
Stage 2	121	-	-	-	-	-
Critical Hdwy	6.42	6.22	4.12	-	-	-
Critical Hdwy Stg 1	5.42	-	-	-	_	-
Critical Hdwy Stg 2	5.42	_	_	_	_	_
Follow-up Hdwy	3.518	3.318	2.218	-	_	_
Pot Cap-1 Maneuver	833	1035	1574	_	_	_
Stage 1	985	-	- 1017	_	_	_
Stage 2	904	_		-	_	_
Platoon blocked, %	304	-	-	_		-
	010	1025	1574	-		-
Mov Cap-1 Maneuver	812	1035	1574	-	-	-
Mov Cap-2 Maneuver	812	-	-	-	-	-
Stage 1	960	-	-	-	-	-
Stage 2	904	-	-	-	-	-
Approach	EB		NB		SB	
HCM Control Delay, s	8.6		3.5		0	
HCM LOS	0.0 A		ა.ა		U	
I IOWI LOS	А					
Minor Lane/Major Mvn	nt	NBL	NBT	EBLn1	SBT	SBR
Capacity (veh/h)		1574		1035	_	
HCM Lane V/C Ratio		0.025	_	0.03	_	_
HCM Control Delay (s)		7.3	0	8.6	_	_
HCM Lane LOS		Α.	A	Α	_	<u>-</u>
HCM 95th %tile Q(veh)	0.1	-	0.1	_	
HOW SOUT WILL W(VEI))	0.1	-	U. I	-	-

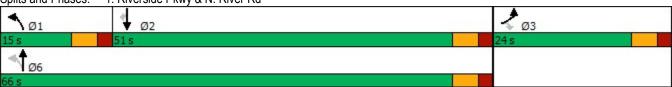
A&R Engineering 23-198 DC BLOX - ATL WEST Data Center on N. River Road (DRI 4112) - Douglasville, GA Synchro 11 Report Page 6

	۶	•	4	†	ļ	1
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	*	7	7	↑	↑	7
Traffic Volume (vph)	306	134	49	286	727	96
Future Volume (vph)	306	134	49	286	727	96
Lane Group Flow (vph)	326	143	52	304	773	102
Turn Type	Prot	Perm	pm+pt	NA	NA	Perm
Protected Phases	3		1	6	2	
Permitted Phases		3	6			2
Detector Phase	3	3	1	6	2	2
Switch Phase						
Minimum Initial (s)	5.0	5.0	5.0	15.0	15.0	15.0
Minimum Split (s)	15.0	15.0	15.0	28.5	28.5	28.5
Total Split (s)	24.0	24.0	15.0	66.0	51.0	51.0
Total Split (%)	26.7%	26.7%	16.7%	73.3%	56.7%	56.7%
Yellow Time (s)	3.5	3.5	3.5	3.5	3.5	3.5
All-Red Time (s)	2.0	2.0	2.0	2.0	2.0	2.0
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	5.5	5.5	5.5	5.5	5.5	5.5
Lead/Lag			Lead		Lag	Lag
Lead-Lag Optimize?			Yes		Yes	Yes
Recall Mode	None	None	None	Min	Min	Min
v/c Ratio	0.78	0.31	0.22	0.29	0.85	0.13
Control Delay	45.7	7.7	7.5	7.3	27.7	2.9
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	45.7	7.7	7.5	7.3	27.7	2.9
Queue Length 50th (ft)	174	0	9	60	343	0
Queue Length 95th (ft)	#329	47	20	96	#599	23
Internal Link Dist (ft)	583			1053	851	
Turn Bay Length (ft)		150	255			270
Base Capacity (vph)	450	487	290	1398	1102	965
Starvation Cap Reductn	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0
Reduced v/c Ratio	0.72	0.29	0.18	0.22	0.70	0.11

Intersection Summary

Cycle Length: 90

Actuated Cycle Length: 75.6


Natural Cycle: 90

Control Type: Actuated-Uncoordinated

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

Synchro 11 Report A&R Engineering 23-198 DC BLOX - ATL WEST Data Center on N. River Road (DRI 4112) - Douglasville, GA Page 1

Movement EBL EBR NBL NBT SBT SBR Lane Configurations 1
Traffic Volume (veh/h) 306 134 49 286 727 96 Future Volume (veh/h) 306 134 49 286 727 96 Initial Q (Qb), veh 0 0 0 0 0 0 0 Ped-Bike Adj(A_pbT) 1.00 1.00 1.00 1.00 1.00 Parking Bus, Adj 1.00 1.00 1.00 1.00 1.00 1.00 Work Zone On Approach No No No Adj Sat Flow, veh/h/ln 1856 1767 1544 1767 1767 1752 Adj Flow Rate, veh/h 326 0 52 304 773 0 Peak Hour Factor 0.94 0.94 0.94 0.94 0.94 0.94 Percent Heavy Veh, % 3 9 24 9 9 10 Cap, veh/h 373 246 1125 912 Arrive On Green 0.21 0.00 0.04 0.64 0.52 0.00 Sat Flow, veh/h 1767 1497 1471 1767 1767 1485 Grp Volume(v), veh/h 326 0 52 304 773 0 Grp Sat Flow(s),veh/h/ln 1767 1497 1471 1767 1767 1485 Q Serve(g_s), s 12.9 0.0 1.1 5.5 27.2 0.0 Cycle Q Clear(g_c), s 12.9 0.0 1.00 1.00 Lane Grp Cap(c), veh/h 373 246 1125 912
Traffic Volume (veh/h) 306 134 49 286 727 96 Future Volume (veh/h) 306 134 49 286 727 96 Initial Q (Qb), veh 0 0 0 0 0 0 Ped-Bike Adj(A_pbT) 1.00 1.00 1.00 1.00 1.00 Parking Bus, Adj 1.00 1.00 1.00 1.00 1.00 Work Zone On Approach No No No No No Adj Sat Flow, veh/h/In 1856 1767 1544 1767 1767 1752 Adj Flow Rate, veh/h 326 0 52 304 773 0 Peak Hour Factor 0.94 0.94 0.94 0.94 0.94 0.94 Percent Heavy Veh, % 3 9 24 9 9 10 Cap, veh/h 373 246 1125 912 Arrive On Green 0.21 0.00 0.04 0.64 0.52 <td< td=""></td<>
Future Volume (veh/h) 306 134 49 286 727 96 Initial Q (Qb), veh 0 0 0 0 0 0 Ped-Bike Adj(A_pbT) 1.00 1.00 1.00 1.00 1.00 Parking Bus, Adj 1.00 1.00 1.00 1.00 1.00 Work Zone On Approach No No No No No Adj Stat Flow, veh/h/In 1856 1767 1544 1767 1767 1752 Adj Flow Rate, veh/h 326 0 52 304 773 0 Peak Hour Factor 0.94 0.94 0.94 0.94 0.94 0.94 Percent Heavy Veh, % 3 9 24 9 9 10 Cap, veh/h 373 246 1125 912 Arrive On Green 0.21 0.00 0.04 0.64 0.52 0.00 Sat Flow, veh/h 1767 1497 1471 1767 1485
Ped-Bike Adj(A_pbT) 1.00 1.00 1.00 1.00 Parking Bus, Adj 1.00 1.00 1.00 1.00 1.00 Work Zone On Approach No No No No No Adj Sat Flow, veh/h/In 1856 1767 1544 1767 1752 Adj Flow Rate, veh/h 326 0 52 304 773 0 Peak Hour Factor 0.94 0.94 0.94 0.94 0.94 0.94 Percent Heavy Veh, % 3 9 24 9 9 10 Cap, veh/h 373 246 1125 912 Arrive On Green 0.21 0.00 0.04 0.64 0.52 0.00 Sat Flow, veh/h 1767 1497 1471 1767 1485 Grp Volume(v), veh/h 326 0 52 304 773 0 Grp Sat Flow(s),veh/h/In 1767 1497 1471 1767 1485 Q Serve(g_s), s
Parking Bus, Adj 1.00 1.00 1.00 1.00 1.00 1.00 Work Zone On Approach No No No No No Adj Sat Flow, veh/h/In 1856 1767 1544 1767 1752 Adj Flow Rate, veh/h 326 0 52 304 773 0 Peak Hour Factor 0.94 0.94 0.94 0.94 0.94 Percent Heavy Veh, % 3 9 24 9 9 10 Cap, veh/h 373 246 1125 912 Arrive On Green 0.21 0.00 0.04 0.64 0.52 0.00 Sat Flow, veh/h 1767 1497 1471 1767 1485 Grp Volume(v), veh/h 326 0 52 304 773 0 Grp Sat Flow(s),veh/h/In 1767 1497 1471 1767 1485 Q Serve(g_s), s 12.9 0.0 1.1 5.5 27.2 0.0
Work Zone On Approach No No No Adj Sat Flow, veh/h/ln 1856 1767 1544 1767 1767 1752 Adj Flow Rate, veh/h 326 0 52 304 773 0 Peak Hour Factor 0.94 0.94 0.94 0.94 0.94 0.94 Percent Heavy Veh, % 3 9 24 9 9 10 Cap, veh/h 373 246 1125 912 Arrive On Green 0.21 0.00 0.04 0.64 0.52 0.00 Sat Flow, veh/h 1767 1497 1471 1767 1485 Grp Volume(v), veh/h 326 0 52 304 773 0 Grp Sat Flow(s), veh/h/ln 1767 1497 1471 1767 1485 Q Serve(g_s), s 12.9 0.0 1.1 5.5 27.2 0.0 Cycle Q Clear(g_c), s 12.9 0.0 1.1 5.5 27.2 0.0 <
Adj Sat Flow, veh/h/ln 1856 1767 1544 1767 1752 Adj Flow Rate, veh/h 326 0 52 304 773 0 Peak Hour Factor 0.94 0.94 0.94 0.94 0.94 Percent Heavy Veh, % 3 9 24 9 9 10 Cap, veh/h 373 246 1125 912 Arrive On Green 0.21 0.00 0.04 0.64 0.52 0.00 Sat Flow, veh/h 1767 1497 1471 1767 1485 Grp Volume(v), veh/h 326 0 52 304 773 0 Grp Sat Flow(s),veh/h/ln 1767 1497 1471 1767 1485 Q Serve(g_s), s 12.9 0.0 1.1 5.5 27.2 0.0 Cycle Q Clear(g_c), s 12.9 0.0 1.1 5.5 27.2 0.0 Prop In Lane 1.00 1.00 1.00 1.00 1.00 Lane Grp Cap(c), veh/h 373 246 1125 912
Adj Flow Rate, veh/h 326 0 52 304 773 0 Peak Hour Factor 0.94 0.94 0.94 0.94 0.94 0.94 Percent Heavy Veh, % 3 9 24 9 9 10 Cap, veh/h 373 246 1125 912 Arrive On Green 0.21 0.00 0.04 0.64 0.52 0.00 Sat Flow, veh/h 1767 1497 1471 1767 1485 Grp Volume(v), veh/h 326 0 52 304 773 0 Grp Sat Flow(s),veh/h/ln 1767 1497 1471 1767 1485 Q Serve(g_s), s 12.9 0.0 1.1 5.5 27.2 0.0 Cycle Q Clear(g_c), s 12.9 0.0 1.1 5.5 27.2 0.0 Prop In Lane 1.00 1.00 1.00 1.00 Lane Grp Cap(c), veh/h 373 246 1125 912
Peak Hour Factor 0.94 0.94 0.94 0.94 0.94 0.94 0.94 Percent Heavy Veh, % 3 9 24 9 9 10 Cap, veh/h 373 246 1125 912 Arrive On Green 0.21 0.00 0.04 0.64 0.52 0.00 Sat Flow, veh/h 1767 1497 1471 1767 1485 Grp Volume(v), veh/h 326 0 52 304 773 0 Grp Sat Flow(s),veh/h/ln 1767 1497 1471 1767 1485 Q Serve(g_s), s 12.9 0.0 1.1 5.5 27.2 0.0 Cycle Q Clear(g_c), s 12.9 0.0 1.1 5.5 27.2 0.0 Prop In Lane 1.00 1.00 1.00 1.00 Lane Grp Cap(c), veh/h 373 246 1125 912
Percent Heavy Veh, % 3 9 24 9 9 10 Cap, veh/h 373 246 1125 912 Arrive On Green 0.21 0.00 0.04 0.64 0.52 0.00 Sat Flow, veh/h 1767 1497 1471 1767 1485 Grp Volume(v), veh/h 326 0 52 304 773 0 Grp Sat Flow(s),veh/h/ln 1767 1497 1471 1767 1485 Q Serve(g_s), s 12.9 0.0 1.1 5.5 27.2 0.0 Cycle Q Clear(g_c), s 12.9 0.0 1.1 5.5 27.2 0.0 Prop In Lane 1.00 1.00 1.00 1.00 Lane Grp Cap(c), veh/h 373 246 1125 912
Cap, veh/h 373 246 1125 912 Arrive On Green 0.21 0.00 0.04 0.64 0.52 0.00 Sat Flow, veh/h 1767 1497 1471 1767 1485 Grp Volume(v), veh/h 326 0 52 304 773 0 Grp Sat Flow(s),veh/h/ln 1767 1497 1471 1767 1485 Q Serve(g_s), s 12.9 0.0 1.1 5.5 27.2 0.0 Cycle Q Clear(g_c), s 12.9 0.0 1.1 5.5 27.2 0.0 Prop In Lane 1.00 1.00 1.00 1.00 Lane Grp Cap(c), veh/h 373 246 1125 912
Arrive On Green 0.21 0.00 0.04 0.64 0.52 0.00 Sat Flow, veh/h 1767 1497 1471 1767 1767 1485 Grp Volume(v), veh/h 326 0 52 304 773 0 Grp Sat Flow(s),veh/h/ln 1767 1497 1471 1767 1767 1485 Q Serve(g_s), s 12.9 0.0 1.1 5.5 27.2 0.0 Cycle Q Clear(g_c), s 12.9 0.0 1.1 5.5 27.2 0.0 Prop In Lane 1.00 1.00 1.00 1.00 Lane Grp Cap(c), veh/h 373 246 1125 912
Arrive On Green 0.21 0.00 0.04 0.64 0.52 0.00 Sat Flow, veh/h 1767 1497 1471 1767 1767 1485 Grp Volume(v), veh/h 326 0 52 304 773 0 Grp Sat Flow(s),veh/h/ln 1767 1497 1471 1767 1767 1485 Q Serve(g_s), s 12.9 0.0 1.1 5.5 27.2 0.0 Cycle Q Clear(g_c), s 12.9 0.0 1.1 5.5 27.2 0.0 Prop In Lane 1.00 1.00 1.00 1.00 Lane Grp Cap(c), veh/h 373 246 1125 912
Grp Volume(v), veh/h 326 0 52 304 773 0 Grp Sat Flow(s),veh/h/ln 1767 1497 1471 1767 1485 Q Serve(g_s), s 12.9 0.0 1.1 5.5 27.2 0.0 Cycle Q Clear(g_c), s 12.9 0.0 1.1 5.5 27.2 0.0 Prop In Lane 1.00 1.00 1.00 1.00 Lane Grp Cap(c), veh/h 373 246 1125 912
Grp Volume(v), veh/h 326 0 52 304 773 0 Grp Sat Flow(s),veh/h/ln 1767 1497 1471 1767 1485 Q Serve(g_s), s 12.9 0.0 1.1 5.5 27.2 0.0 Cycle Q Clear(g_c), s 12.9 0.0 1.1 5.5 27.2 0.0 Prop In Lane 1.00 1.00 1.00 1.00 Lane Grp Cap(c), veh/h 373 246 1125 912
Grp Sat Flow(s), veh/h/ln 1767 1497 1471 1767 1485 Q Serve(g_s), s 12.9 0.0 1.1 5.5 27.2 0.0 Cycle Q Clear(g_c), s 12.9 0.0 1.1 5.5 27.2 0.0 Prop In Lane 1.00 1.00 1.00 1.00 Lane Grp Cap(c), veh/h 373 246 1125 912
Q Serve(g_s), s 12.9 0.0 1.1 5.5 27.2 0.0 Cycle Q Clear(g_c), s 12.9 0.0 1.1 5.5 27.2 0.0 Prop In Lane 1.00 1.00 1.00 Lane Grp Cap(c), veh/h 373 246 1125 912
Cycle Q Clear(g_c), s 12.9 0.0 1.1 5.5 27.2 0.0 Prop In Lane 1.00 1.00 1.00 1.00 Lane Grp Cap(c), veh/h 373 246 1125 912
Prop In Lane 1.00 1.00 1.00 Lane Grp Cap(c), veh/h 373 246 1125 912
Lane Grp Cap(c), veh/h 373 246 1125 912
V/C Ratio(X) 0.87 0.21 0.27 0.85
Avail Cap(c_a), veh/h 452 373 1479 1112
HCM Platoon Ratio 1.00 1.00 1.00 1.00 1.00
Upstream Filter(I) 1.00 0.00 1.00 1.00 0.00
Uniform Delay (d), s/veh 27.6 0.0 12.8 5.8 15.1 0.0
Incr Delay (d2), s/veh 15.0 0.0 0.4 0.3 6.7 0.0
Initial Q Delay(d3),s/veh 0.0 0.0 0.0 0.0 0.0 0.0
%ile BackOfQ(50%),veh/ln 6.7 0.0 0.3 1.5 10.2 0.0
Unsig. Movement Delay, s/veh
LnGrp Delay(d),s/veh 42.6 0.0 13.3 6.0 21.8 0.0
LnGrp LOS D B A C
Approach Vol, veh/h 326 356 773
Approach Delay, s/veh 42.6 7.1 21.8
Approach LOS D A C
Timer - Assigned Phs 1 2 6 8
Phs Duration (G+Y+Rc), s 8.7 42.8 51.5 20.7
Change Period (Y+Rc), s 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5
Max Green Setting (Gmax), s 9.5 45.5 60.5 18.5
Max Q Clear Time (g_c+I1), s 3.1 29.2 7.5 14.9
Green Ext Time (p_c), s 0.0 8.1 3.8 0.4
Intersection Summary
HCM 6th Ctrl Delay 22.8
HCM 6th LOS C

User approved volume balancing among the lanes for turning movement.
Unsignalized Delay for [EBR, SBR] is excluded from calculations of the approach delay and intersection delay.

Intersection						
Int Delay, s/veh	1.3					
•		EDD	ND	NDT	ODT	ODD
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	Y	4=	00	4	4	
Traffic Vol, veh/h	30	17	23	565	806	57
Future Vol, veh/h	30	17	23	565	806	57
Conflicting Peds, #/hr	0	0	0	0	_ 0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage		-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	94	94	94	94	94	94
Heavy Vehicles, %	2	2	2	9	9	2
Mvmt Flow	32	18	24	601	857	61
Major/Minor I	Minor	ı	Major1	N	10ior?	
	Minor2		Major1		Major2	
Conflicting Flow All	1537	888	918	0	-	0
Stage 1	888	-	-	-	-	-
Stage 2	649	-	-	_	-	-
Critical Hdwy	6.42	6.22	4.12	-	-	-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
Follow-up Hdwy			2.218	-	-	-
Pot Cap-1 Maneuver	128	343	743	-	-	-
Stage 1	402	-	-	-	-	-
Stage 2	520	-	-	-	-	-
Platoon blocked, %				-	-	-
Mov Cap-1 Maneuver	122	343	743	-	-	-
Mov Cap-2 Maneuver	122	-	-	-	-	-
Stage 1	383	-	-	-	-	-
Stage 2	520	-	-	-	-	-
Ü						
A	ED		ND		OF	
Approach	EB		NB		SB	
HCM Control Delay, s	37.7		0.4		0	
HCM LOS	Е					
Minor Lane/Major Mvm	it	NBL	NBT	EBLn1	SBT	SBR
Capacity (veh/h)		743	-		-	-
HCM Lane V/C Ratio		0.033		0.314	_	_
HCM Control Delay (s)		10	0		_	_
HCM Lane LOS		R	Δ	⊢	-	_
HCM Lane LOS HCM 95th %tile Q(veh)		0.1	Α	1.3	-	-

A&R Engineering 23-198 DC BLOX - ATL WEST Data Center on N. River Road (DRI 4112) - Douglasville, GA Synchro 11 Report Page 3

	٠	•	1	†	↓	1
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	*	7	ሻ	^	^	7
Traffic Volume (vph)	34	6	5	613	848	14
Future Volume (vph)	34	6	5	613	848	14
Lane Group Flow (vph)	37	7	5	674	932	15
Turn Type	Prot	Perm	Perm	NA	NA	Perm
Protected Phases	3			6	2	
Permitted Phases		3	6			2
Detector Phase	3	3	6	6	2	2
Switch Phase		_	_		_	_
Minimum Initial (s)	5.0	5.0	15.0	15.0	15.0	15.0
Minimum Split (s)	26.5	26.5	28.5	28.5	28.5	28.5
Total Split (s)	26.5	26.5	53.5	53.5	53.5	53.5
Total Split (%)	33.1%	33.1%	66.9%	66.9%	66.9%	66.9%
Yellow Time (s)	3.5	3.5	3.5	3.5	3.5	3.5
	2.0	2.0	2.0	2.0	2.0	2.0
All-Red Time (s)						
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	5.5	5.5	5.5	5.5	5.5	5.5
Lead/Lag						
Lead-Lag Optimize?						
Recall Mode	None	None	Min	Min	Min	Min
v/c Ratio	0.21	0.04	0.02	0.46	0.63	0.02
Control Delay	32.1	17.3	3.2	4.6	7.2	1.6
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	32.1	17.3	3.2	4.6	7.2	1.6
Queue Length 50th (ft)	17	0	1	96	174	0
Queue Length 95th (ft)	39	11	3	183	358	4
Internal Link Dist (ft)	535			899	1249	
Turn Bay Length (ft)		140	315			280
Base Capacity (vph)	516	509	222	1468	1468	770
Starvation Cap Reductn	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0
Reduced v/c Ratio	0.07	0.01	0.02	0.46	0.63	0.02
	0.01	0.01	0.02	0.40	0.00	0.02
Intersection Summary						
Cycle Length: 80	•					
Actuated Cycle Length: 62.1						
Natural Cycle: 80						
Control Type: Actuated-Unc	oordinated					
Splits and Phases: 3: Rive	erside Pkw	v & West	point Pkw	N		
4		,	P • · · · · · · · · · · · · · · · · · ·	·)		
▼ Ø2						
53.5 s						
≪ ♠						
1 Ø6						-

Synchro 11 Report A&R Engineering 23-198 DC BLOX - ATL WEST Data Center on N. River Road (DRI 4112) - Douglasville, GA Page 4

Page 5

	۶	*	4	†	↓	1		
Movement	EBL	EBR	NBL	NBT	SBT	SBR		
Lane Configurations	*	7	*	4	†	7		
Traffic Volume (veh/h)	34	6	5	613	848	14		
Future Volume (veh/h)	34	6	5	613	848	14		
Initial Q (Qb), veh	0	0	0	0	0	0		
Ped-Bike Adj(A_pbT)	1.00	1.00	1.00		•	1.00		
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00		
Work Zone On Approach	No	1.00	1.00	No	No	1.00		
Adj Sat Flow, veh/h/ln	1485	1648	714	1767	1767	759		
Adj Flow Rate, veh/h	37	0	5	674	932	0		
Peak Hour Factor	0.91	0.91	0.91	0.91	0.91	0.91		
Percent Heavy Veh, %	28	17	80	9	9	77		
Cap, veh/h	58	.,	251	1258	1258	, ,		
Arrive On Green	0.04	0.00	0.71	0.71	0.71	0.00		
Sat Flow, veh/h	1414	1397	229	1767	1767	643		
Grp Volume(v), veh/h	37	0	5	674	932	0		
Grp Sat Flow(s), veh/h/ln	1414	1397	229	1767	1767	643		
Q Serve(g_s), s	1.1	0.0	0.6	7.9	14.3	0.0		
Cycle Q Clear(g_c), s	1.1	0.0	14.9	7.9	14.3	0.0		
Prop In Lane	1.00	1.00	1.00	1.9	14.3	1.00		
Lane Grp Cap(c), veh/h	58	1.00	251	1258	1258	1.00		
V/C Ratio(X)	0.63		0.02	0.54	0.74			
. ,	666		334	1901	1901			
Avail Cap(c_a), veh/h HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00		
	1.00	0.00	1.00	1.00	1.00	0.00		
Upstream Filter(I)	21.1		8.5		3.9	0.00		
Uniform Delay (d), s/veh	10.9	0.0	0.5	3.0	1.9			
Incr Delay (d2), s/veh				0.8		0.0		
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0		
%ile BackOfQ(50%),veh/ln	0.5	0.0	0.0	0.3	0.7	0.0		
Unsig. Movement Delay, s/veh	24.0	0.0	0.5	2.7	г о	0.0		
LnGrp Delay(d),s/veh	31.9	0.0	8.5	3.7	5.8	0.0		
LnGrp LOS	C		A	A	A			
Approach Vol, veh/h	37			679	932			
Approach Delay, s/veh	31.9			3.8	5.8			
Approach LOS	С			Α	А			
Timer - Assigned Phs		2				6	8	
Phs Duration (G+Y+Rc), s		37.3				37.3	7.3	
Change Period (Y+Rc), s		5.5				5.5	5.5	
Max Green Setting (Gmax), s		48.0				48.0	21.0	
Max Q Clear Time (g_c+l1), s		16.3				16.9	3.1	
Green Ext Time (p_c), s		15.4				9.7	0.1	
Intersection Summary								
HCM 6th Ctrl Delay			5.5					
HCM 6th LOS			Α					
Notes								

Unsignalized Delay for [EBR, SBR] is excluded from calculations of the approach delay and intersection delay.

Intersection Int Delay, s/veh 4 Movement EBL EBR NBL NBT SBT SBR Lane Configurations
Int Delay, s/veh 4 Movement EBL EBR NBL NBT SBT SBR Lane Configurations ↑ ↓
Movement EBL EBR NBL NBT SBT SBR Lane Configurations ✓
Lane Configurations Y ↓
Traffic Vol, veh/h 0 39 16 19 42 0 Future Vol, veh/h 0 39 16 19 42 0 Conflicting Peds, #/hr 0 0 0 0 0 0 0 Sign Control Stop Stop Free Ree Free Page 92 92
Future Vol, veh/h 0 39 16 19 42 0 Conflicting Peds, #/hr 0 0 0 0 0 0 0 Sign Control Stop Stop Free Free Free Free Free Free Free Free Free Ree Free Fr
Conflicting Peds, #/hr 0 0 0 0 0 0 0 Sign Control Stop Stop Free Do 0 0 - 2 92 92
Sign Control Stop Stop Free None Veh in Median Storage, # 0 0 - 0 0 0 - 0 0 - 0 0 - 0 0 - 0 0 - 0 - 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92
RT Channelized - None - None - None Storage Length 0
RT Channelized - None - None - None Storage Length 0 0 Veh in Median Storage, # 0 0 0 Grade, % 0 0 0 Peak Hour Factor 92 92 92 92 92 92 Heavy Vehicles, % 2
Storage Length 0 -
Weh in Median Storage, # 0 - - 0 0 - Grade, % 0 - - 0 0 - Peak Hour Factor 92 92 92 92 92 92 Heavy Vehicles, % 2 2 2 2 2 2 2 2 Mvmt Flow 0 42 17 21 46 0 Conflicting Flow All 101 46 46 0 - 0 Stage 1 46 - - - - - Stage 2 55 - - - - - Critical Hdwy 6.42 6.22 4.12 - - - Critical Hdwy Stg 1 5.42 - - - - -
Grade, % 0 - - 0 0 - Peak Hour Factor 92
Peak Hour Factor 92
Heavy Vehicles, % 2
Mvmt Flow 0 42 17 21 46 0 Major/Minor Minor2 Major1 Major2 Conflicting Flow All 101 46 46 0 - 0 Stage 1 46 - - - - - - Stage 2 55 - - - - - - Critical Hdwy 6.42 6.22 4.12 - - - Critical Hdwy Stg 1 5.42 - - - - - Critical Hdwy Stg 2 5.42 - - - - -
Major/Minor Minor2 Major1 Major2 Conflicting Flow All 101 46 46 0 0 Stage 1 46 - - - - - Stage 2 55 - - - - - Critical Hdwy 6.42 6.22 4.12 - - - Critical Hdwy Stg 1 5.42 - - - - - Critical Hdwy Stg 2 5.42 - - - - -
Conflicting Flow All 101 46 46 0 - 0 Stage 1 46 - - - - - - Stage 2 55 - - - - - - Critical Hdwy 6.42 6.22 4.12 - - - - Critical Hdwy Stg 1 5.42 - - - - - - Critical Hdwy Stg 2 5.42 - - - - - -
Conflicting Flow All 101 46 46 0 - 0 Stage 1 46 - - - - - - Stage 2 55 - - - - - - Critical Hdwy 6.42 6.22 4.12 - - - - Critical Hdwy Stg 1 5.42 - - - - - - Critical Hdwy Stg 2 5.42 - - - - - -
Stage 1 46 - - - - - Stage 2 55 - - - - - Critical Hdwy 6.42 6.22 4.12 - - - Critical Hdwy Stg 1 5.42 - - - - - Critical Hdwy Stg 2 5.42 - - - - -
Stage 1 46 -<
Stage 2 55 -<
Critical Hdwy 6.42 6.22 4.12 - - - Critical Hdwy Stg 1 5.42 - - - - - Critical Hdwy Stg 2 5.42 - - - - -
Critical Hdwy Stg 1 5.42 Critical Hdwy Stg 2 5.42
Critical Hdwy Stg 2 5.42
, ,
Follow-up Hdwv 3 518 3 318 2 218
Follow-up Hdwy 3.518 3.318 2.218 Pot Cap-1 Maneuver 898 1023 1562
Stage 2 968
Platoon blocked, %
Mov Cap-1 Maneuver 888 1023 1562
Mov Cap-2 Maneuver 888
Stage 1 965
Stage 2 968
Approach ED ND OD
Approach EB NB SB
HCM Control Delay, s 8.7 3.4 0
HCM LOS A
Minor Lane/Major Mymt NRI NRT FRI n1 SRT SRD
Minor Lane/Major Mvmt NBL NBT EBLn1 SBT SBR
Capacity (veh/h) 1562 - 1023
Capacity (veh/h) 1562 - 1023 HCM Lane V/C Ratio 0.011 - 0.041
Capacity (veh/h) 1562 - 1023 HCM Lane V/C Ratio 0.011 - 0.041 HCM Control Delay (s) 7.3 0 8.7
Capacity (veh/h) 1562 - 1023 HCM Lane V/C Ratio 0.011 - 0.041

A&R Engineering 23-198 DC BLOX - ATL WEST Data Center on N. River Road (DRI 4112) - Douglasville, GA Synchro 11 Report Page 6 Signal Warrant Analysis/ Left Turn Phase Analysis

SIGNAL WARRANT ANALYSIS SUMMARY REPORT - Riverside Pkwy @ N. River Rd

Project Number: 23-198 Report Date: February 26, 2024

Counts Date: February 6, 2024

Major Street : Riverside Pkwy
Minor Street : N. River Rd

Speed on Major Street: 45

Lanes @ Intersection : Major Street - 1

Minor Street - 1

Analyst: SDP

WARRANT 1, EIGHT-HOUR VEHICULAR VOLUME

WARRANT 1 NOT SATISFIED

STANDARD 1 NOT SATISFIED CONDITION A 1 HOURS

CONDITION B 2 HOURS

STANDARD 2 NOT SATISFIED CONDITION A 1 HOURS

CONDITION B 2 HOURS

WARRANT 2, FOUR-HOUR VEHICULAR VOLUME

WARRANT 2 NOT SATISFIED 2 HOURS

WARRANT 3, PEAK HOUR

WARRANT 3 SATISFIED

STANDARD A SATISFIED 39 VEHICLE HOURS

STANDARD B SATISFIED 1 HOURS

WARRANT 4, PEDESTRIAN VOLUME

WARRANT 4 NOT EVALUATED

STANDARD A NOT SATISFIED 0 HOURS STANDARD B NOT SATISFIED 0 HOURS

WARRANT 5, SCHOOL CROSSING

WARRANT 5 NOT EVALUATED

WARRANT 6, COORDINATED SIGNAL SYSTEM

WARRANT 6 NOT EVALUATED

WARRANT 7, CRASH EXPERIENCE

WARRANT 7 NOT EVALUATED

WARRANT 8, ROADWAY NETWORK

WARRANT 8 NOT EVALUATED

WARRANT 9, INTERSECTION NEAR A GRADE CROSSING

WARRANT 9 NOT EVALUATED

SIGNAL WARRANT ANALYSIS SUMMARY REPORT - Riverside Pkwy @ N. River Rd

Project Number : 23-198 Report Date : February 26, 2024
Counts Date : February 6, 2024

Major Street : Riverside Pkwy Lanes @ Intersection : Major Street - 1
Minor Street : N. River Rd Minor Street - 1

Speed on Major Street: 45 Analyst: SDP

24-HOUR TRAFFIC VOLUME

		Maj	or Street			Majo	or Street	
Time		Nor	thbound			Sout	thbound	
24 Hours	Total Approach	Right	% Right	With 0 % RT Turn	Total Approach	Right	% Right	With 0% RT Turn
	Volume	Turn	Turn	Reduction	Volume	Turn	Turn	Reduction
12:00 AM	0	0	0	0	0	0	0	0
1:00 AM	0	0	0	0	0	0	0	0
2:00 AM	0	0	0	0	0	0	0	0
3:00 AM	0	0	0	0	0	0	0	0
4:00 AM	0	0	0	0	0	0	0	0
5:00 AM	0	0	0	0	0	0	0	0
6:00 AM	0	0	0	0	0	0	0	0
7:00 AM	811	0	0	811	442	75	17	442
8:00 AM	480	0	0	480	316	75	24	316
9:00 AM	0	0	0	0	0	0	0	0
10:00 AM	0	0	0	0	0	0	0	0
11:00 AM	0	0	0	0	0	0	0	0
12:00 PM	0	0	0	0	0	0	0	0
1:00 PM	0	0	0	0	0	0	0	0
2:00 PM	0	0	0	0	0	0	0	0
3:00 PM	0	0	0	0	0	0	0	0
4:00 PM	305	0	0	305	685	39	6	685
5:00 PM	308	0	0	308	782	55	7	782
6:00 PM	0	0	0	0	0	0	0	0
7:00 PM	0	0	0	0	0	0	0	0
8:00 PM	0	0	0	0	0	0	0	0
9:00 PM	0	0	0	0	0	0	0	0
10:00 PM	0	0	0	0	0	0	0	0
11:00 PM	0	0	0	0	0	0	0	0

I	Total	1904	2225
•			

24-HOUR TRAFFIC VOLUME

		Min	or Street			Minor Street			
Time		Eas	stbound			We	stbound		
24 Hours	Total Approach Volume	Right Turn	% Right Turn	With 100% RT Turn Reduction	Total Approach Volume	Right Turn	% Right Turn	With 100% RT Turn Reduction	
12:00 AM	0	0	0	0	0	0	0	0	
1:00 AM	0	0	0	0	0	0	0	0	
2:00 AM	0	0	0	0	0	0	0	0	
3:00 AM	0	0	0	0	0	0	0	0	
4:00 AM	0	0	0	0	0	0	0	0	
5:00 AM	0	0	0	0	0	0	0	0	
6:00 AM	0	0	0	0	0	0	0	0	
7:00 AM	66	27	41	39	0	0	0	0	
8:00 AM	74	23	31	51	0	0	0	0	
9:00 AM	0	0	0	0	0	0	0	0	
10:00 AM	0	0	0	0	0	0	0	0	
11:00 AM	0	0	0	0	0	0	0	0	
12:00 PM	0	0	0	0	0	0	0	0	
1:00 PM	0	0	0	0	0	0	0	0	
2:00 PM	0	0	0	0	0	0	0	0	
3:00 PM	0	0	0	0	0	0	0	0	
4:00 PM	139	45	32	94	0	0	0	0	
5:00 PM	283	71	25	212	0	0	0	0	
6:00 PM	0	0	0	0	0	0	0	0	
7:00 PM	0	0	0	0	0	0	0	0	
8:00 PM	0	0	0	0	0	0	0	0	
9:00 PM	0	0	0	0	0	0	0	0	
10:00 PM	0	0	0	0	0	0	0	0	
11:00 PM	0	0	0	0	0	0	0	0	

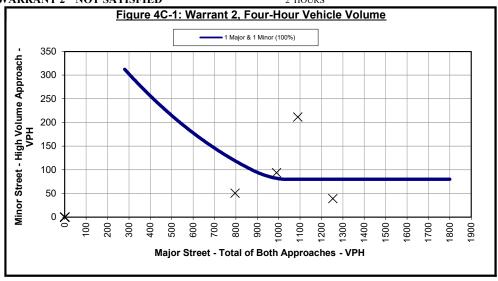
WARRANT ANALYSIS RESULTS - Riverside Pkwy @ N. River Rd

WARRANT 1 - EIGHT-HOUR VEHICULAR VOLUME

WARRANT INOT SATISFIED

STANDARD 1	NOT SATISFIED	CONDITION A CONDITION B	1 2	HOURS HOURS
STANDARD 2	NOT SATISFIED	CONDITION A	1	HOURS
		CONDITION B	2	HOURS

24-HOUR TRAFFIC VOLUME EVALUATION


	MAJOR ST TOTAL	MINOR ST HIGH		WARRA	NT 1	
HOUR OF DAY	OF BOTH	VOLUME	STAND	ARD 1	STANI	DARD 2
	APPROACHES	APPROACH	CONDITION A	CONDITION B	CONDITION A	CONDITION B
12:00 AM	0	0	0	0	0	0
1:00 AM	0	0	0	0	0	0
2:00 AM	0	0	0	0	0	0
3:00 AM	0	0	0	0	0	0
4:00 AM	0	0	0	0	0	0
5:00 AM	0	0	0	0	0	0
6:00 AM	0	0	0	0	0	0
7:00 AM	1253	39	MAJOR	MAJOR	MAJOR	MAJOR
8:00 AM	796	51	MAJOR	MAJOR	MAJOR	MAJOR
9:00 AM	0	0	0	0	0	0
10:00 AM	0	0	0	0	0	0
11:00 AM	0	0	0	0	0	0
12:00 PM	0	0	0	0	0	0
1:00 PM	0	0	0	0	0	0
2:00 PM	0	0	0	0	0	0
3:00 PM	0	0	0	0	0	0
4:00 PM	990	94	MAJOR	ВОТН	MAJOR	BOTH
5:00 PM	1090	212	ВОТН	ВОТН	BOTH	ВОТН
6:00 PM	0	0	0	0	0	0
7:00 PM	0	0	0	0	0	0
8:00 PM	0	0	0	0	0	0
9:00 PM	0	0	0	0	0	0
10:00 PM	0	0	0	0	0	0
11:00 PM	0	0	0	0	0	0
TOTAL	4129	396				

CRITERIA**	STANDARD	1 - 100%	STANDARD 2 - 80%		
	CONDITION A	CONDITION B	CONDITION A	CONDITION B	
MAJOR ST	500	750	400	600	
MINOR ST	150	75	120	60	
NO. OF HOURS MET	1	2	1	2	

WARRANT 2, FOUR-HOUR VEHICULAR VOLUME

WARRANT 2* NOT SATISFIED

2 HOURS

WARRANT 3, PEAK HOUR

STANDARD A SATISFIED

39 VEHICLE HOURS


385 Peak Hour Minor-Street Volume

364 Average Minor-Street Delay (seconds)

1 Number of Approach Lanes (Minor Street)

STANDARD B* SATISFIED

1 HOURS

*Note: Curves for minimum volumes are based on the curves from FIGURES 4C-1 & 4C-2, Page 4C-7 for WARRANT 2, and FIGURES 4C-3 & 4C-4, Page 4C-9 in section C of the MUTCD 2009 edition for WARRANT 3.

SIGNAL WARRANT ANALYSIS SUMMARY REPORT (Build Conditions) - Riverside Pkwy @ N. River Rd

Project Number: 23-198 Report Date: February 26, 2024

Counts Date: February 6, 2024

Major Street : Riverside Pkwy
Minor Street : N. River Rd

Speed on Major Street: 45

Lanes @ Intersection : Major Street - 1

Minor Street - 1

Analyst: SDP

WARRANT 1, EIGHT-HOUR VEHICULAR VOLUME

WARRANT 1 NOT SATISFIED

STANDARD 1 NOT SATISFIED CONDITION A 2 HOURS CONDITION B 4 HOURS

STANDARD 2 NOT SATISFIED CONDITION A 2 HOURS

CONDITION B 4 HOURS

WARRANT 2, FOUR-HOUR VEHICULAR VOLUME

WARRANT 2 NOT SATISFIED 3 HOURS

WARRANT 3, PEAK HOUR

WARRANT 3 SATISFIED

STANDARD A SATISFIED 61 VEHICLE HOURS

STANDARD B SATISFIED 1 HOURS

WARRANT 4, PEDESTRIAN VOLUME

WARRANT 4 NOT EVALUATED

STANDARD A NOT SATISFIED 0 HOURS STANDARD B NOT SATISFIED 0 HOURS

WARRANT 5, SCHOOL CROSSING

WARRANT 5 NOT EVALUATED

WARRANT 6, COORDINATED SIGNAL SYSTEM

WARRANT 6 NOT EVALUATED

WARRANT 7, CRASH EXPERIENCE

WARRANT 7 NOT EVALUATED

WARRANT 8, ROADWAY NETWORK

WARRANT 8 NOT EVALUATED

WARRANT 9, INTERSECTION NEAR A GRADE CROSSING

WARRANT 9 NOT EVALUATED

SIGNAL WARRANT ANALYSIS SUMMARY REPORT - Riverside Pkwy @ N. River Rd

Project Number : 23-198 Report Date : February 26, 2024
Counts Date : February 6, 2024

Major Street : Riverside Pkwy Lanes @ Intersection : Major Street - 1
Minor Street : N. River Rd Minor Street - 1

Speed on Major Street: 45 Analyst: SDP

24-HOUR TRAFFIC VOLUME

		Maj	or Street		Major Street				
Time		Nor	thbound			Sout	hbound		
24 Hours	Гotal Approach Volume	Right Turn	% Right Turn	With 0 % RT Turn Reduction	Total Approach Volume	Right Turn	% Right Turn	With 0% RT Turn Reduction	
12:00 AM	0	0	0	0	0	0	0	0	
1:00 AM	0	0	0	0	0	0	0	0	
2:00 AM	0	0	0	0	0	0	0	0	
3:00 AM	0	0	0	0	0	0	0	0	
4:00 AM	0	0	0	0	0	0	0	0	
5:00 AM	0	0	0	0	0	0	0	0	
6:00 AM	0	0	0	0	0	0	0	0	
7:00 AM	871	0	0	871	531	164	31	531	
8:00 AM	516	0	0	516	369	128	35	369	
9:00 AM	0	0	0	0	0	0	0	0	
10:00 AM	0	0	0	0	0	0	0	0	
11:00 AM	0	0	0	0	0	0	0	0	
12:00 PM	0	0	0	0	0	0	0	0	
1:00 PM	0	0	0	0	0	0	0	0	
2:00 PM	0	0	0	0	0	0	0	0	
3:00 PM	0	0	0	0	0	0	0	0	
4:00 PM	329	0	0	329	720	74	10	720	
5:00 PM	335	0	0	335	823	96	12	823	
6:00 PM	0	0	0	0	0	0	0	0	
7:00 PM	0	0	0	0	0	0	0	0	
8:00 PM	0	0	0	0	0	0	0	0	
9:00 PM	0	0	0	0	0	0	0	0	
10:00 PM	0	0	0	0	0	0	0	0	
11:00 PM	0	0	0	0	0	0	0	0	

Total	2051	2443

24-HOUR TRAFFIC VOLUME

		Min	or Street			Minor Street			
Time		Eas	stbound			We	stbound		
24 Hours	Total Approach Volume	Right Turn	% Right Turn	With 100% RT Turn Reduction	Total Approach Volume	Right Turn	% Right Turn	With 100% RT Turn Reduction	
12:00 AM	0	0	0	0	0	0	0	0	
1:00 AM	0	0	0	0	0	0	0	0	
2:00 AM	0	0	0	0	0	0	0	0	
3:00 AM	0	0	0	0	0	0	0	0	
4:00 AM	0	0	0	0	0	0	0	0	
5:00 AM	0	0	0	0	0	0	0	0	
6:00 AM	0	0	0	0	0	0	0	0	
7:00 AM	188	76	40	112	0	0	0	0	
8:00 AM	129	45	35	84	0	0	0	0	
9:00 AM	0	0	0	0	0	0	0	0	
10:00 AM	0	0	0	0	0	0	0	0	
11:00 AM	0	0	0	0	0	0	0	0	
12:00 PM	0	0	0	0	0	0	0	0	
1:00 PM	0	0	0	0	0	0	0	0	
2:00 PM	0	0	0	0	0	0	0	0	
3:00 PM	0	0	0	0	0	0	0	0	
4:00 PM	248	89	36	159	0	0	0	0	
5:00 PM	440	134	30	306	0	0	0	0	
6:00 PM	0	0	0	0	0	0	0	0	
7:00 PM	0	0	0	0	0	0	0	0	
8:00 PM	0	0	0	0	0	0	0	0	
9:00 PM	0	0	0	0	0	0	0	0	
10:00 PM	0	0	0	0	0	0	0	0	
11:00 PM	0	0	0	0	0	0	0	0	

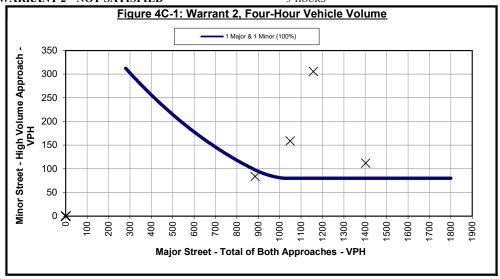
WARRANT ANALYSIS RESULTS - Riverside Pkwy @ N. River Rd

WARRANT 1 - EIGHT-HOUR VEHICULAR VOLUME

WARRANT INOT SATISFIED

STANDARD 1	NOT SATISFIED	CONDITION A	2	HOURS	
		CONDITION B	4	HOURS	
STANDARD 2	NOT SATISFIED	CONDITION A	2	HOURS	
		CONDITION B	4	HOURS	

24-HOUR TRAFFIC VOLUME EVALUATION


	MAJOR ST TOTAL	MINOR ST HIGH	WARRANT 1					
HOUR OF DAY	OF BOTH	VOLUME	STANDA	ARD 1	STANI	DARD 2		
	APPROACHES	APPROACH	CONDITION A	CONDITION B	CONDITION A	CONDITION B		
12:00 AM	0	0	0	0	0	0		
1:00 AM	0	0	0	0	0	0		
2:00 AM	0	0	0	0	0	0		
3:00 AM	0	0	0	0	0	0		
4:00 AM	0	0	0	0	0	0		
5:00 AM	0	0	0	0	0	0		
6:00 AM	0	0	0	0	0	0		
7:00 AM	1402	112	MAJOR	ВОТН	MAJOR	BOTH		
8:00 AM	885	84	MAJOR	ВОТН	MAJOR	ВОТН		
9:00 AM	0	0	0	0	0	0		
10:00 AM	0	0	0	0	0	0		
11:00 AM	0	0	0	0	0	0		
12:00 PM	0	0	0	0	0	0		
1:00 PM	0	0	0	0	0	0		
2:00 PM	0	0	0	0	0	0		
3:00 PM	0	0	0	0	0	0		
4:00 PM	1049	159	BOTH	ВОТН	BOTH	ВОТН		
5:00 PM	1158	306	BOTH	ВОТН	BOTH	ВОТН		
6:00 PM	0	0	0	0	0	0		
7:00 PM	0	0	0	0	0	0		
8:00 PM	0	0	0	0	0	0		
9:00 PM	0	0	0	0	0	0		
10:00 PM	0	0	0	0	0	0		
11:00 PM	0	0	0	0	0	0		
TOTAL	4494	661						

CRITERIA**	STANDARD	1 - 100%	STANDARD 2 - 80%		
	CONDITION A	CONDITION B	CONDITION A	CONDITION B	
MAJOR ST	500	750	400	600	
MINOR ST	150	75	120	60	
NO. OF HOURS MET	2	4	2	4	

WARRANT 2, FOUR-HOUR VEHICULAR VOLUME

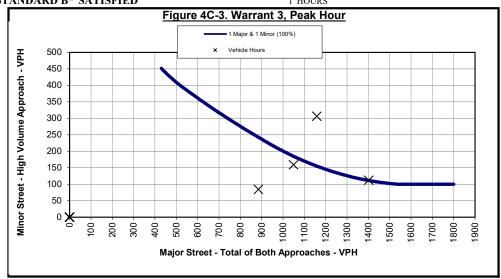
WARRANT 2* NOT SATISFIED

3 HOURS

WARRANT 3, PEAK HOUR

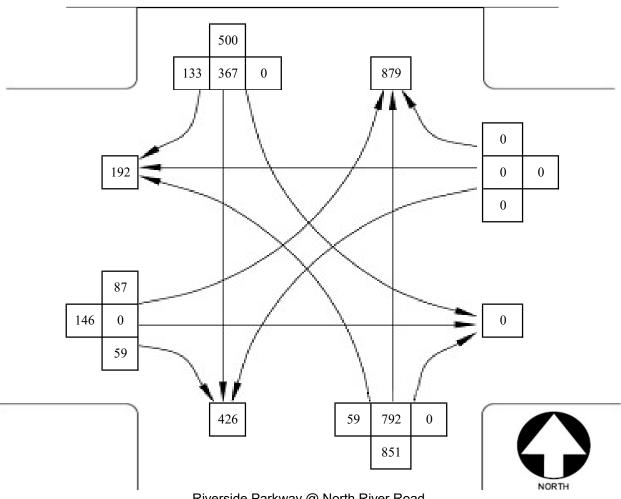
STANDARD A SATISFIED

61 VEHICLE HOURS


440 Peak Hour Minor-Street Volume

500 Average Minor-Street Delay (seconds)

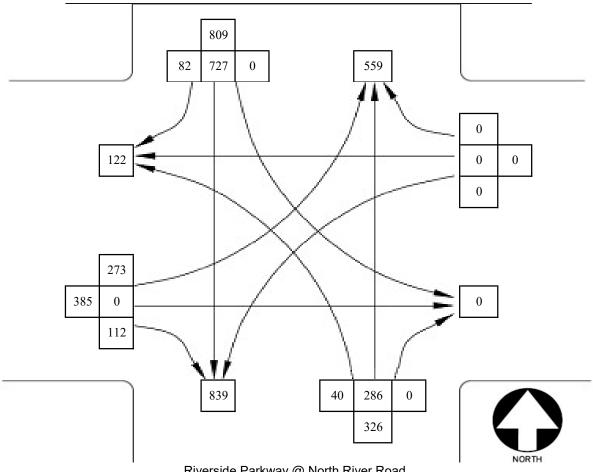
1 Number of Approach Lanes (Minor Street)


STANDARD B* SATISFIED

1 HOURS

*Note: Curves for minimum volumes are based on the curves from FIGURES 4C-1 & 4C-2, Page 4C-7 for WARRANT 2, and FIGURES 4C-3 & 4C-4, Page 4C-9 in section C of the MUTCD 2009 edition for WARRANT 3.

No Build Conditions Peak Hour Count (AM)

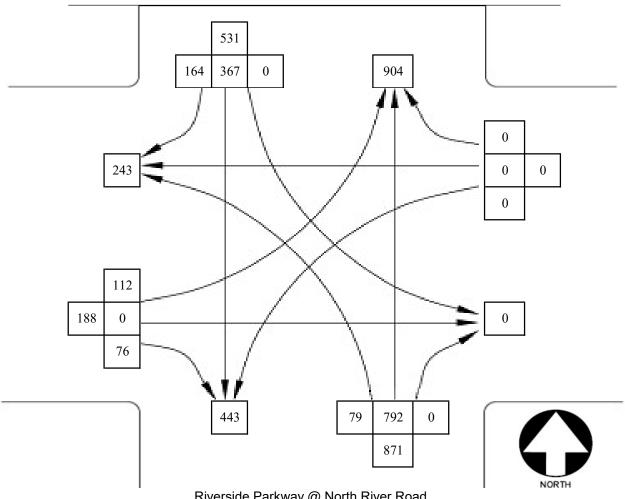


Riverside Parkway @ North River Road

Conflicting Movements	Through Volume (V _o)	Left Turn Volume (V _{lt})	Opposing Lanes (N _o)	Cross-Product $(V_o \times V_{lt} \div N_o)$	Cross-Product Warrant?	Peak Volume Warrant?	Turn Phase Recommended?
NBL & SBT	367	59	1	21,653	NO	NO	NO
SBL & NBT	792	0	1	0	NO	NO	NO
EBL & WBT	0	87	1	0	NO	Lagging Phase	YES, Lagging
WBL & EBT	0	0	1	0	NO	NO	NO

LEFT TURN CRITERIA - AM PEAK HOUR

No Build Conditions Peak Hour Count (PM)

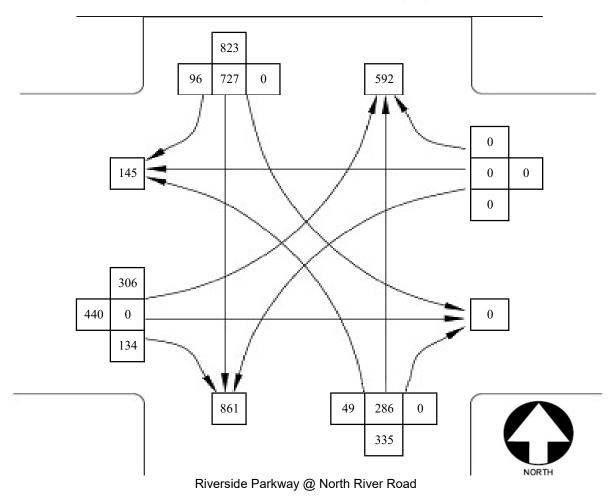


Riverside Parkway @ North River Road

Conflicting Movements	Through Volume (V _o)	Left Turn Volume (V _{lt})	Opposing Lanes (N _o)	Cross-Product $(V_o \times V_{lt} \div N_o)$	Cross-Product Warrant?	Peak Volume Warrant?	Turn Phase Recommended?
NBL & SBT	727	40	1	29,080	NO	NO	NO
SBL & NBT	286	0	1	0	NO	NO	NO
EBL & WBT	0	273	1	0	NO	YES	YES, Leading
WBL & EBT	0	0	1	0	NO	NO	NO

LEFT TURN CRITERIA - PM PEAK HOUR

Build Conditions Peak Hour Count (AM)



Riverside Parkway @ North River Road

Conflicting Movements	Through Volume (V _o)	Left Turn Volume (V _{lt})	Opposing Lanes (N _o)	Cross-Product $(V_o \times V_{lt} \div N_o)$	Cross-Product Warrant?	Peak Volume Warrant?	Turn Phase Recommended?
NBL & SBT	367	79	1	28,993	NO	Lagging Phase	YES, Lagging
SBL & NBT	792	0	1	0	NO	NO	NO
EBL & WBT	0	112	1	0	NO	Lagging Phase	YES, Lagging
WBL & EBT	0	0	1	0	NO	NO	NO

LEFT TURN CRITERIA - AM PEAK HOUR

Build Conditions Peak Hour Count (PM)

Conflicting Movements	Through Volume (V _o)	Left Turn Volume (V _{lt})	Opposing Lanes (N₀)	Cross-Product (V _o × V _{It} ÷ N _o)	Cross-Product Warrant?	:	Turn Phase Recommended?
NBL & SBT	727	49	1	35,623	Lagging Phase	NO	YES, Lagging
SBL & NBT	286	0	1	0	NO	NO	NO
EBL & WBT	0	306	1	0	NO	YES	YES, Leading
WBL & EBT	0	0	1	0	NO	NO	NO

LEFT TURN CRITERIA - PM PEAK HOUR

A&R Engineering February 2024

1. Riverside Pkwy @ N. River

A.M. Peak Hour

	I	Riverside	Parkw	ay		Riverside	Parkwa	ıy	N	lorth Ri	ver Roa	d			-	
		Northl	oound			South	bound			Eastb	ound			West	bound	
Condition	L	T	R	Tot	L	T	R	Tot	L	T	R	Tot	L	T	R	Tot
Existing 2024 Traffic Counts:	18	747	0	765	0	346	71	417	37	0	25	62	0	0	0	0
Growth Factor (%):	3	3	3		3	3	3		3	3	3		3	3	3	
Adjacent Development Trips:	27	0	0	27	0	0	40	40	33	0	22	55	0	0	0	0
Riverside West 200 Development Trips:	5	0	0	5	0	0	7	7	5	0	4	9	0	0	0	0
Riverside West 3 Development Trips:	8	0	0	8	0	0	11	11	10	0	6	16	0	0	0	0
No-Build 2026 Volumes:	59	792	0	851	0	367	133	500	87	0	59	146	0	0	0	0
Proposed Development Trips:	20	0	0	20	0	0	31	31	25	0	17	42	0	0	0	0
Future 2026 Traffic Volumes:	79	792	0	871	0	367	164	531	112	0	76	188	0	0	0	0

	I	Riverside	Parkw	ay	I	Riverside	Parkwa	ay	N	orth R	iver Roa	d			-	
		North	bound			South	bound			East	ound			West	bound	
Condition	L	T	R	Tot	L	T	R	Tot	L	T	R	Tot	L	T	R	Tot
Existing 2024 Traffic Counts:	21	270	0	291	0	686	52	738	200	0	67	267	0	0	0	0
Growth Factor (%):	3	3	3		3	3	3		3	3	3		3	3	3	
Adjacent Development Trips:	12	0	0	12	0	0	19	19	43	0	28	71	0	0	0	0
Riverside West 200 Development Trips:	2	0	0	2	0	0	3	3	7	0	5	12	0	0	0	0
Riverside West 3 Development Trips:	4	0	0	4	0	0	5	5	11	0	8	19	0	0	0	0
No-Build 2026 Volumes:	40	286	0	326	0	727	82	809	273	0	112	385	0	0	0	0
Proposed Development Trips:	9	0	0	9	0	0	14	14	33	0	22	55	0	0	0	0
Future 2026 Traffic Volumes:	49	286	0	335	0	727	96	823	306	0	134	440	0	0	0	0

A&R Engineering February 2024

2. Riverside Pkwy @ Summer Lake

A.M. Peak Hour

	I	Riverside	Parkw	ay]	Riverside	Parkwa	ay	St	ımmer l	Lake Roa	ad			-	
		North	bound			South	bound			Easth	ound			West	bound	
Condition	L	T	R	Tot	L	T	R	Tot	L	T	R	Tot	L	T	R	Tot
Existing 2024 Traffic Counts:	13	771	0	784	0	385	30	415	54	0	32	86	0	0	0	0
Growth Factor (%):	3	3	3		3	3	3		3	3	3		3	3	3	
Adjacent Development Trips:	0	33	0	33	0	40	0	40	0	0	0	0	0	0	0	0
Riverside West 200 Development Trips:	0	5	0	5	0	7	0	7	0	0	0	0	0	0	0	0
Riverside West 3 Development Trips:	0	10	0	10	0	11	0	11	0	0	0	0	0	0	0	0
No-Build 2026 Volumes:	14	865	0	879	0	466	32	498	57	0	34	91	0	0	0	0
Proposed Development Trips:	0	25	0	25	0	31	0	31	0	0	0	0	0	0	0	0
Future 2026 Traffic Volumes:	14	890	0	904	0	497	32	529	57	0	34	91	0	0	0	0

	I	Riverside	Parkw	ay]	Riverside	Parkwa	ay	Su	mmer	Lake Ro	ad			-	
		North	bound			South	bound			Eastl	oound			West	bound	
Condition	L	T	R	Tot	L	T	R	Tot	L	T	R	Tot	L	T	R	Tot
Existing 2024 Traffic Counts:	22	444	0	466	0	722	54	776	28	0	16	44	0	0	0	0
Growth Factor (%):	3	3	3		3	3	3		3	3	3		3	3	3	
Adjacent Development Trips:	0	43	0	43	0	19	0	19	0	0	0	0	0	0	0	0
Riverside West 200 Development Trips:	0	7	0	7	0	3	0	3	0	0	0	0	0	0	0	0
Riverside West 3 Development Trips:	0	11	0	11	0	5	0	5	0	0	0	0	0	0	0	0
No-Build 2026 Volumes:	23	532	0	555	0	792	57	849	30	0	17	47	0	0	0	0
Proposed Development Trips:	0	33	0	33	0	14	0	14	0	0	0	0	0	0	0	0
Future 2026 Traffic Volumes:	23	565	0	588	0	806	57	863	30	0	17	47	0	0	0	0

A&R Engineering February 2024

3. Riverside Pkwy @ Westpoint

A.M. Peak Hour

	I	Riverside	Parkw	ay		Riverside	Parkwa	ay	W	estpoin	Parkw	ay			-	
		Northl	ound			South	bound			Eastb	ound			West	bound	
Condition	L	T	R	Tot	L	T	R	Tot	L	T	R	Tot	L	T	R	Tot
Existing 2024 Traffic Counts:	13	924	0	937	0	390	31	421	15	0	6	21	0	0	0	0
Growth Factor (%):	3	3	3		3	3	3		3	3	3		3	3	3	
Adjacent Development Trips:	0	33	0	33	0	40	0	40	0	0	0	0	0	0	0	0
Riverside West 200 Development Trips:	0	5	0	5	0	7	0	7	0	0	0	0	0	0	0	0
Riverside West 3 Development Trips:	0	10	0	10	0	11	0	11	0	0	0	0	0	0	0	0
No-Build 2026 Volumes:	14	1027	0	1041	0	471	33	504	16	0	6	22	0	0	0	0
Proposed Development Trips:	0	25	0	25	0	31	0	31	0	0	0	0	0	0	0	0
Future 2026 Traffic Volumes:	14	1052	0	1066	0	502	33	535	16	0	6	22	0	0	0	0

		Riverside	Parkw	ay]	Riverside	Parkw	ay	W	estpoin'	t Parkw	ay			-	
		North	bound			South	bound			Eastl	ound			West	bound	
Condition	L	T	R	Tot	L	T	R	Tot	L	T	R	Tot	L	T	R	Tot
Existing 2024 Traffic Counts:	5	490	0	495	0	761	13	774	32	0	6	38	0	0	0	0
Growth Factor (%):	3	3	3		3	3	3		3	3	3		3	3	3	
Adjacent Development Trips:	0	43	0	43	0	19	0	19	0	0	0	0	0	0	0	0
Riverside West 200 Development Trips:	0	7	0	7	0	3	0	3	0	0	0	0	0	0	0	0
Riverside West 3 Development Trips:	0	11	0	11	0	5	0	5	0	0	0	0	0	0	0	0
No-Build 2026 Volumes:	5	580	0	585	0	834	14	848	34	0	6	40	0	0	0	0
Proposed Development Trips:	0	33	0	33	0	14	0	14	0	0	0	0	0	0	0	0
Future 2026 Traffic Volumes:	5	613	0	618	0	848	14	862	34	0	6	40	0	0	0	0

A&R Engineering February 2024

4. N. River Rd @ W. Site Drwy

A.M. Peak Hour

	N	North Ri	ver Roa	d		North Ri	ver Roa	d	Site I	Drivewa	y 1 (Wes	stern)			-	
		North	bound			South	bound			Easth	ound			West	bound	
Condition	L	T	R	Tot	L	T	R	Tot	L	T	R	Tot	L	T	R	Tot
Existing 2024 Traffic Counts:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Growth Factor (%):	3	3	3		3	3	3		3	3	3		3	3	3	
Adjacent Development Trips:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Riverside West 200 Development Trips:	0	6	0	6	0	5	0	5	0	0	0	0	0	0	0	0
Riverside West 3 Development Trips:	0	19	0	19	0	16	0	16	0	0	0	0	0	0	0	0
No-Build 2026 Volumes:	0	25	0	25	0	21	0	21	0	0	0	0	0	0	0	0
Proposed Development Trips:	36	15	0	51	0	13	0	13	0	0	29	29	0	0	0	0
Future 2026 Traffic Volumes:	36	40	0	76	0	34	0	34	0	0	29	29	0	0	0	0

]	North Ri	ver Roa	ıd		North Ri	ver Roa	d	Site	Drivewa	y 1 (We	stern)			-	
		North	bound			South	bound			Eastl	ound			West	bound	
Condition	L	T	R	Tot	L	T	R	Tot	L	T	R	Tot	L	T	R	Tot
Existing 2024 Traffic Counts:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Growth Factor (%):	3	3	3		3	3	3		3	3	3		3	3	3	
Adjacent Development Trips:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Riverside West 200 Development Trips:	0	3	0	3	0	6	0	6	0	0	0	0	0	0	0	0
Riverside West 3 Development Trips:	0	9	0	9	0	19	0	19	0	0	0	0	0	0	0	0
No-Build 2026 Volumes:	0	12	0	12	0	25	0	25	0	0	0	0	0	0	0	0
Proposed Development Trips:	16	7	0	23	0	17	0	17	0	0	39	39	0	0	0	0
Future 2026 Traffic Volumes:	16	19	0	35	0	42	0	42	0	0	39	39	0	0	0	0