

Georgia Tech High Performance Computing Center (HPCC) DRI #2569

City of Atlanta, Georgia

Report Prepared:

May 2016

Prepared for:

Portman Holdings, LLC

Prepared by:

Kimley-Horn and Associates, Inc. 817 West Peachtree Street NW, The Biltmore, Suite 601 Atlanta, Georgia 30308 019292007

Transportation Analysis

Georgia Tech High Performance Computing Center (HPCC) DRI #2569

City of Atlanta, Georgia

Report Prepared:

May 2016

Prepared for:

Portman Holdings, LLC

Prepared by:

TABLE OF CONTENTS

Exe	cutiv	e Summary	1
1.0		Project Description	4
	1.1 1.2 1.3 1.4 1.5	Introduction Site Plan Review Site Access Bicycle and Pedestrian Facilities Transit Facilities	8 8 9
2.0		Traffic Analyses, Methodology and Assumptions	9
	2.1 2.2 2.3	Growth Rate Traffic Data Collection Detailed Intersection Analysis	g
3.0		Study Network	10
	3.1 3.2 3.3 3.4 3.5	Gross Trip Generation Trip Distribution Level-of-Service Standards Study Network Determination Existing Roadway Facilities	11 11 11
4.0		Trip Generation	14
5.0		Trip Distribution and Assignment	15
6.0	6.1 6.2 6.3 6.4	Traffic Analysis Existing 2016 Conditions Projected 2018 No-Build Conditions Projected 2018 Build Conditions Alternative Analysis (City/Midtown Alliance Project)	18 21 23
7.0		Ingress/Egress Analysis	31
8.0		Identification of Programmed Projects	31
9.0		Internal Circulation Analysis	32
10.0)	Compliance with Comprehensive Plan Analysis	32

i

LIST OF TABLES

Table 1	Proposed Land Uses and Densities	4
Table 2	Peak Hour Summary	10
Table 3	Gross Trip Generation	11
Table 4	Intersection Control Summary	12
Table 5	Roadway Classification and ADTs	14
Table 6	Net Trip Generation	15
Table 7	Existing 2016 Intersection Levels-of-Service	18
Table 8	Projected 2018 No-Build Intersection Levels-of-Service	
Table 9	Projected 2018 Build Intersection Levels-of-Service	23
Table 10	Projected 2018 Build Alternative Intersection Levels-of-Service	27
Table 11	Programmed Projects	31
	LIST OF FIGURES	
Figure 1		5
Figure 1	Location Map	
Figure 2	Location MapSite Aerial	6
Figure 2 Figure 3	Location MapSite AerialBird's Eye View	6 7
Figure 2 Figure 3 Figure 4	Location Map Site Aerial Bird's Eye View Study Intersections	6 7 13
Figure 2 Figure 3 Figure 4 Figure 5	Location Map Site Aerial Bird's Eye View Study Intersections Trip Distribution and Assignment	6
Figure 2 Figure 3 Figure 4	Location Map Site Aerial Bird's Eye View Study Intersections	6 13 16 17
Figure 2 Figure 3 Figure 4 Figure 5 Figure 6	Location Map Site Aerial Bird's Eye View Study Intersections Trip Distribution and Assignment Project Trips	6131617
Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7	Location Map Site Aerial Bird's Eye View Study Intersections Trip Distribution and Assignment Project Trips Existing 2016 Weekday Conditions	613161720
Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8	Location Map Site Aerial Bird's Eye View Study Intersections Trip Distribution and Assignment Project Trips Existing 2016 Weekday Conditions Projected 2018 No-Build Weekday Conditions	
Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 Figure 9	Location Map Site Aerial	

LIST OF APPENDICES

Appendix A	Site Photo Log
Appendix B	Land Use and Zoning Maps
Appendix C	Proposed Site Plan
Appendix D	Trip Generation Analysis
Appendix E	Intersection Volume Worksheets
Appendix F	Programmed Project Fact Sheets

Available Upon Request

Raw Traffic Count Data Synchro Capacity Analyses

EXECUTIVE SUMMARY

This report presents the analysis of the anticipated traffic impacts of the proposed Georgia Tech High Performance Computing Center (HPCC) mixed-use development located in the City of Atlanta, Georgia. The approximate 2.2-acre site is located north of 4th Street, south of Armstead Place, east of Spring Street, and west of West Peachtree Street. The proposed development will be mixed-use, consisting of approximately 750,000 square feet of office, data center, retail, and restaurant land uses. The data center portion of the project is being developed by others, but is included in this transportation analysis.

The project is a Development of Regional Impact (DRI) and is subject to Georgia Regional Transportation Authority (GRTA) and Atlanta Regional Commission (ARC) review due to the project size exceeding 700,000 SF of mixed-use development in a region core area type, as determined by the Atlanta Regional Commission's *Unified Growth Policy Map (UGPM)*. The DRI trigger for this development was the submittal of the SAP (Special Administrative Permit) Application with the City of Atlanta. The DRI was formally triggered with the filing of the Initial DRI Information (Form 1) on March 29, 2016 by the City of Atlanta.

The proposed project is expected to be completed by 2018. The proposed site will consist of the following land uses and densities:

 Office:
 625,000 SF

 Data Center:
 80,000 SF*

 Retail:
 11,000 SF

 Restaurant:
 34,000 SF

*The data center portion of the project is being developed by others and is anticipated to be built-out concurrently with the office, retail, and restaurant portions of the project.

The DRI analysis includes an estimation of the overall vehicle trips projected to be generated by the development, also known as gross trips. Reductions to gross trips are also considered in the analysis, including mixed-use reductions, alternative transportation mode reductions, and pass-by trip reductions.

Mixed-use reductions occur when a site has a combination of different land uses that interact with one another. For example, people working in an office development may walk to the restaurants and retail instead of driving off-site to dine. This reduces the number of vehicle trips that will be made on the roadway, thus reducing traffic congestion. These types of interactions are expected at the Georgia Tech HPCC development – including workers walking to the data center, retail, and restaurant land uses.

Alternative mode reductions are taken when a site can be accessed by modes other than vehicles (walking, bicycling, transit, etc.). As the Georgia Tech HPCC development is located in a region core with proximity to transit and increased pedestrian facilities, a 25% alternative mode reduction was taken. The project site is located 0.2 miles (two blocks) from the North Avenue MARTA Rail Station and 0.5 miles (six blocks) from the Midtown MARTA Rail Station, both of which are served by the Red and Gold rail lines seven days a week. The project site is adjacent to three bus stops that are served by GRTA Xpress buses, Cobb County Transit buses, and the Georgia Tech Trolley. The project site is also 0.2 miles (two blocks) from MARTA Bus Route 110 which provides service seven days a week along the Peachtree Street/Peachtree Road corridor.

Pass-by reductions are taken for retail and restaurant trips only. Traffic normally travelling along a roadway may choose to visit a retail or restaurant establishment that is along the vehicle's pre-ordained

019292007 1 May 2016

path. These trips were already on the road and would therefore only be new trips at the driveways. The project site is located next to Georgia Tech in the heart of Midtown Atlanta, an area with increased pedestrian and bicycle facilities. Based on knowledge of the area, it is anticipated that there will be no vehicular pass-by trips for the proposed retail and restaurant land uses. Therefore, for the Georgia Tech HPCC development, no pass-by reductions were taken thus providing a conservative analysis.

Capacity analyses were performed throughout the study network for the Existing 2016 conditions, the Projected 2018 No-Build conditions, and the Projected 2018 Build conditions.

- Existing 2016 conditions represent traffic volumes that were collected in April 2016 by performing AM and PM peak hour turning movement counts.
- Projected 2018 No-Build conditions represent the existing traffic volumes grown for two (2) years at one percent per year throughout the study network.
- Projected 2018 Build conditions represent the Projected 2018 No-Build conditions with the
 addition of the project trips that are anticipated to be generated by the Georgia Tech HPCC
 development. Also included are the two (2) proposed site access driveways in addition to the
 existing study network intersections.

Based on the analysis of Existing 2016 conditions (present conditions; i.e. <u>excludes</u> background traffic growth and <u>excludes</u> the Georgia Tech HPCC project traffic), the following improvements <u>are recommended:</u>

- West Peachtree Street at 4th Street (Int. #3)
 - Install a traffic signal at the intersection preliminary analysis suggests that a traffic signal may be warranted (Warrant 3 – Peak Hour Warrant) based on existing traffic volumes.
- Williams Street at 5th Street (Int. #7)
 - Install a traffic signal at the intersection preliminary analysis suggests that a traffic signal may be warranted (Warrant 3 – Peak Hour Warrant and Warrant 4 – Pedestrian Warrant) based on existing traffic volumes and pedestrian volumes.
 - Restrict the northbound right-turn on red (to reduce vehicle and pedestrian conflicts).

Based on the analysis of Projected 2018 No-Build conditions (<u>includes</u> background traffic growth but <u>excludes</u> the Georgia Tech HPCC project traffic), there are no recommended improvements IN ADDITION TO the improvements associated with the Existing 2016 conditions.

Based on the analysis of Projected 2018 Build conditions (includes background traffic growth and includes the Georgia Tech HPCC project traffic plus the site access driveway), the following improvements are recommended IN ADDITION TO the improvements associated with the Existing 2016 conditions and the Projected 2018 No-Build conditions:

- Armstead Place at Proposed Driveway 1 (Int. #8)
 - Construct one ingress lane on-site along Proposed Driveway 1.
 - Construct one egress lane on-site along Proposed Driveway 1 one shared northbound left-turn/right-turn lane.
- 4th Street at Proposed Driveway 2 (Int. #9)
 - Construct one ingress lane on-site along Proposed Driveway 2.

 Construct one egress lane on-site along Proposed Driveway 2 – one southbound rightturn only lane.

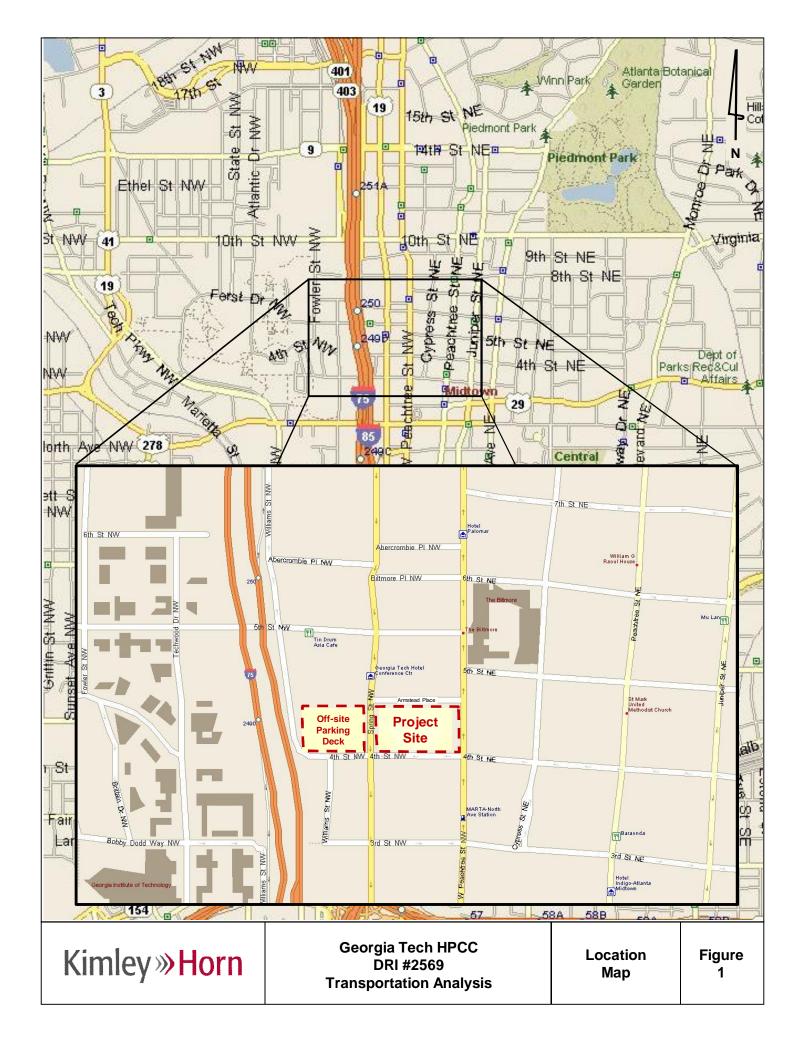
Based on the Projected 2018 Build conditions, the following additional improvements <u>may be considered:</u>

- Spring Street at 4th Street (Int. #4)
 - Install a traffic signal at the intersection preliminary analysis indicates that a traffic signal will improve the operation of the intersection. While analysis suggests that the intersection may not warrant a traffic signal based on traffic volumes alone, a traffic signal will be beneficial for pedestrians crossing Spring Street as the Georgia Tech HPCC development will utilize parking in the existing Georgia Tech Parking Deck on the west side of Spring Street.

Additionally, as requested by the City of Atlanta and the Midtown Alliance as noted in the GRTA LOU, an Alternative Analysis with a two-way conversion of 4th Street was performed and is presented in Section 6.4 Alternative Analysis. Based on the alternative analysis, the intersection of Spring Street at 4th Street (Int. #4) experiences increased delay, further supporting the need for a traffic signal to improve operations and benefit pedestrians (consistent with the bullet note above).

1.0 Project Description

1.1 Introduction


This report presents the analysis of the anticipated traffic impacts of the proposed Georgia Tech High Performance Computing Center (HPCC) development located in the City of Atlanta, Georgia. The approximate 2.2-acre redevelopment site is located north of 4th Street, south of Armstead Place, east of Spring Street, and west of West Peachtree Street. The proposed development will be mixed-use, consisting of approximately 750,000 square feet of office, data center, retail, and restaurant land uses. The data center portion of the project is being developed by others, but is included in this transportation analysis. The project site is located south of the existing Georgia Tech School of Business and Georgia Tech Bookstore and east of the Georgia Tech Hotel and Conference Center. In addition to onsite parking, the Georgia Tech HPCC development will utilize an off-site parking deck located in the northwest corner of the intersection of Spring Street and 4th Street/Williams Street. The development will be an addition to the existing Technology Square development.


The project will exceed 700,000 square feet of mixed-use development in a region core area type and therefore, the proposed development is a Development of Regional Impact (DRI) and is subject to Atlanta Regional Commission (ARC) and Georgia Regional Transportation Authority (GRTA) review.

Figure 1 provides the location map of the Georgia Tech HPCC development, and **Figure 2** provides a site aerial showing of the project site and surrounding area. **Figure 3** provides a zoomed-in bird's eye view of the project. Field review photographs taken within the vicinity of the study network are located in the site photo log in Appendix A. The City of Atlanta Zoning Ordinance Map and ARC's *Unified Growth Policy Map (UGPM)* are included in Appendix B.

The proposed project is expected to be completed by 2018, and this analysis will consider the full buildout of the proposed site in 2018. A summary of the proposed land-uses and densities is provided below in **Table 1**.

Table 1 Proposed Land Uses and Densities						
Office	625,000 SF					
Data Center	80,000 SF					
Retail	11,000 SF					
Restaurant	34,000 SF					

Kimley » Horn

Georgia Tech HPCC DRI #2569 Transportation Analysis

Site Aerial Figure 2

Kimley » Horn

Georgia Tech HPCC DRI #2569 Transportation Analysis

Bird's Eye View

Figure 3

1.2 Site Plan Review

The project site currently consists of the three-story vacant Crum and Forster Building, a one-story vacant bank building (3,500 SF), a three-story occupied office building (18,000 SF), and associated parking. The one-story bank building and three-story office building will be demolished. The Crum and Forster Building will be renovated and remain. The project site is located in the Special Public Interest (SPI) Zone 16 according to the *City of Atlanta Zoning Ordinance Map* and requires review by the SPI-16 Development Review Committee (DRC). The project site is located in a Region Core area type according to ARC's *Unified Growth Policy Map (UGPM)*. Additionally, the project site is within and adheres to the recommendations in the most recent Midtown LCI, which qualifies the Georgia Tech HPCC development for GRTA's expedited review.

A reference of the proposed site plan is provided in Appendix C. A full-sized site plan consistent with GRTA's Site Plan Guidelines is also being submitted as part of the review package.

1.3 Site Access

The project site is currently served by two (2) driveways along West Peachtree Street, one (1) driveway along Armstead Place, one driveway (1) along Spring Street, and one (1) driveway along 4th Street. As currently envisioned, the proposed development will be served by one (1) driveway along 4th Street and one (1) driveway along Armstead Place. The proposed driveway along Armstead Place will be open only during peak hours for monthly card access. No visitors will be permitted to use this driveway. The existing two (2) driveways along West Peachtree Street and one (1) driveway along Spring Street are proposed to be closed. Additionally, the development will utilize parking in the existing Georgia Tech parking deck located in the northwest quadrant of the intersection of Spring Street and 4th Street/Williams Street. The existing parking deck is accessed by one (1) existing driveway along Spring Street, one (1) existing driveway along Williams Street. Following is a description of each of the driveways:

- 1. Georgia Tech Existing Driveway 1 an existing full movement driveway located as the west leg of the signalized intersection Spring Street at Armstead Place. Georgia Tech Existing Driveway 1 is proposed to remain a signalized full movement driveway.
- Georgia Tech Existing Driveway 2 an existing stop controlled full movement driveway located approximately 150 feet west of the intersection of Spring Street at 4th Street/Williams Street. Georgia Tech Existing Driveway 2 is proposed to remain a stop controlled full movement driveway.
- 3. Georgia Tech Existing Driveway 3 an existing stop controlled full movement driveway located approximately 350 feet south of the intersection of 5th Street at Williams Street. Georgia Tech Existing Driveway 3 is proposed to remain a stop controlled full movement driveway.
- 4. Proposed Driveway 1 a proposed driveway to be located approximately 150 feet east of the intersection of Spring Street and Armstead Place. Proposed Driveway 1 is proposed to be a stop controlled full movement driveway. Proposed Driveway 1 access will be restricted to monthly card access only during peak hours.
- 5. Proposed Driveway 2 a proposed driveway located approximately 250 feet east of the intersection of Spring Street and Armstead Place. Proposed Driveway 2 is proposed to be a stop controlled full movement driveway.

The site driveways mentioned above provide access to all parking for the site. Parking will be provided throughout the development as follows:

New Parking Provided: 576 spaces
Georgia Tech Existing Parking Utilized: 400 spaces
Total Parking Provided: 976 spaces

Parking Required per SPI-16 Zoning:

Office: 2.5 spaces per 1,000 SF (maximum)
Retail & Restaurant 1 space per 600 SF (minimum)
2.5 spaces per 600 SF (maximum)

As the Georgia Tech HPCC development is located in a Region Core, shared parking will be utilized on the project site. Additionally, as the project site is envisioned to be an extension of the existing Technology Square development with increased pedestrian and bicyclist infrastructure, it is anticipated that there will be limited vehicular trips for the retail and restaurant land uses. The project site is being parked at much lower than the maximum parking spaces required, and the development will utilize existing parking assets located in the vicinity of the project site.

1.4 Bicycle and Pedestrian Facilities

The project site is located next to Georgia Tech in the heart of Midtown Atlanta, in an area with increased pedestrian and bicyclist facilities. Pedestrian facilities (sidewalks) currently exist along the project site frontage. There are currently bicycle facilities (bike lanes/paths) along 5th Street in the vicinity of the project site. Additional bicycle facilities are planned as part of project AT-271 (Juniper Street Bicycle/Pedestrian Facilities) and AT-277 (Cycle Atlanta: Phase 1.0 – includes routes on West Peachtree Street and Peachtree Street). More details are provided in Section 8.0.

1.5 Transit Facilities

The project site is located 0.2 miles (2 blocks) from the North Avenue MARTA Rail Station and 0.5 miles (6 blocks) from the Midtown MARTA Rail Station, both of which are served by the Red and Gold lines seven days a week. The project site is adjacent to three bus stops that are served by GRTA Xpress buses, Cobb County Transit buses, and the Georgia Tech Trolley. The project site is also 0.2 miles (two blocks) from MARTA Bus Route 110 which provides service seven days a week along the Peachtree Road corridor.

2.0 Traffic Analyses, Methodology and Assumptions

2.1 Growth Rate

Background traffic is defined as expected traffic on the roadway network in future year(s) absent the construction and opening of the proposed project. Background traffic can include a base growth rate based on historical count data as well as population growth data and estimates as well as trips anticipated from nearby or adjacent other projects. Based on methodology outlined in the GRTA Letter of Understanding (LOU), a one (1) percent per year for two (2) years background traffic growth rate was used for all roadways. This background growth rate was used to account for other development activity in the area.

2.2 Traffic Data Collection

Weekday peak hour turning movement counts were collected on Tuesday, April 12, 2016 at the study intersections during the AM and PM peak periods. The morning and afternoon peak hours varied slightly between the intersections. Peak hours for all intersections are shown in **Table 2**.

Table 2 Peak Hour Summary									
Intersection	AM Peak Hour	PM Peak Hour							
Spring Street at Armstead Place/Georgia Tech Existing Driveway 1	8:00-9:00	5:00-6:00							
West Peachtree Street at Armstead Place	8:00-9:00	5:00-6:00							
3. West Peachtree Street at 4 th Street	7:45-8:45	5:00-6:00							
4. Spring Street at 4 th Street/Williams Street	8:00-9:00	4:00-5:00							
5. 4 th Street at Georgia Tech Existing Driveway 2	7:45-8:45	4:15-5:15							
6. Williams Street at Georgia Tech Existing Driveway 3	7:45-8:45	4:15-5:15							
7. Williams Street at 5 th Street	8:00-9:00	5:00-6:00							

The collected peak hour turning movement traffic counts are available upon request.

2.3 Detailed Intersection Analysis

Level-of-service (LOS) is used to describe the operating characteristics of a road segment or intersection in relation to its capacity. LOS is defined as a qualitative measure that describes operational conditions and motorists' perceptions within a traffic stream. The *Highway Capacity Manual* defines six levels-of-service, LOS A through LOS F, with A being the best and F being the worst. Level-of-service analyses were conducted at all intersections within the study network using *Synchro Professional, Version 9.0*.

Existing traffic signal phasing and timing data were retrieved from the Midtown Traffic Operations Program (MTOP) for Intersection 1. Existing timing data was used in the Existing 2016 conditions, Projected 2018 No-Build conditions, and Projected 2018 Build conditions. All signal timings were optimized using *Synchro Professional*, *Version 9.0* for the improved conditions.

Levels-of-service for signalized intersections are reported for the intersection as a whole. One or more movements at an intersection may experience a low level-of-service, while the intersection as a whole may operate acceptably.

Levels-of-service for unsignalized intersections, with stop control on the minor street only, are reported for the side street approaches and the major street left-turn movements. Low levels-of-service for side street approaches are not uncommon, as vehicles may experience significant delays in turning onto a major roadway.

3.0 STUDY NETWORK

3.1 Gross Trip Generation

Traffic for the proposed land uses and densities were calculated using methodology contained in the *Institute of Transportation Engineers' (ITE) Trip Generation Manual, Ninth Edition*. Gross trips generated are displayed below in **Table 3**. Existing trips generated by the existing land uses on the site are minimal and therefore, were not removed from the network in order to present a more conservative analysis.

Table 3 Gross Trip Generation											
Land Use	ITE	Da	ily Traffi	С	AM	Peak H	our	PM	PM Peak Hour		
(Intensity)	Code	Total	Enter	Exit	Total	Enter	Exit	Total	Enter	Exit	
Data Center (80,000 SF)	160	79	40	39	7	4	3	7	2	5	
General Office Building (625,000 SF)	710	5,285	2,643	2,642	829	730	99	778	132	646	
Specialty Retail Center* (11,000 SF)	826	508	254	254	41	25	16	48	21	27	
Quality Restaurant (18,000 SF)	931	1,619	809	810	15	**	**	135	90	45	
High-Turnover (Sit-Down) Restaurant (8,000 SF)	932	1,017	508	509	86	47	39	79	47	32	
Fast-Food Restaurant without Drive-Through Window (8,000 SF)	933	5,728	2,864	2,864	351	211	140	209	107	102	
Total Gross Trips		14,236	7,118	7,118	1,329	1,017	297	1,256	399	857	

^{*} Land Use 826 Special Retail does not generate any AM peak hour trips. Therefore, Land Use 820 Shopping Center was used to generate AM peak hour trips.

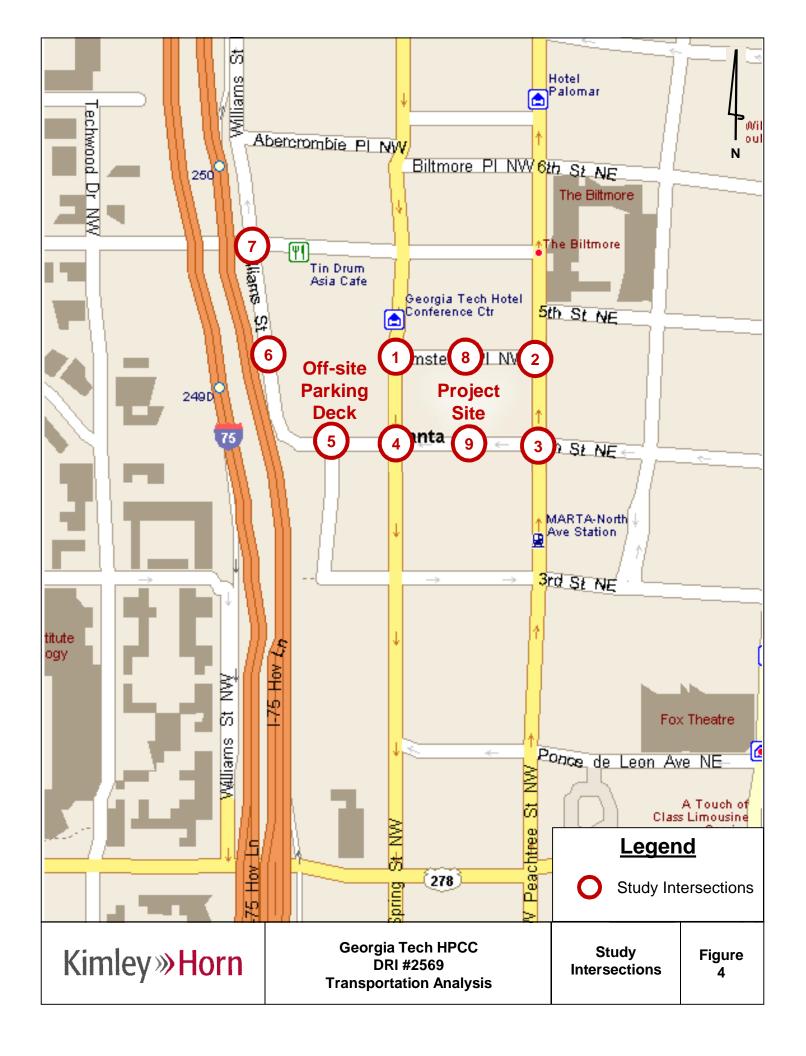
3.2 Trip Distribution

The directional distribution and assignment of new project trips was based on the project land uses, a review of the land use densities and road facilities in the area, engineering judgment, and methodology discussions with the Georgia Regional Transportation Authority (GRTA), Atlanta Regional Commission (ARC), Georgia Department of Transportation (GDOT), and the City of Atlanta.

3.3 Level-of-Service Standards

For the purposes of this traffic analysis, a level-of-service standard of D was assumed for all intersections and segments within the study network. If, however, an intersection or segment currently operates at LOS E or LOS F during an existing peak period, the LOS standard for that peak period becomes LOS E, consistent with the GRTA Letter of Understanding.

3.4 Study Network Determination


A general study area was determined based on a review of land uses and population densities in the area as well as a review of peak hour traffic counts and engineering judgement. As the Georgia Tech HPCC development is located in the Midtown LCI, it qualifies for GRTA Expedited Review, consistent with the GRTA Letter of Understanding. The study area was agreed upon during methodology discussions with GRTA, ARC, GDOT, and City of Atlanta staff, and includes the following nine (9) intersections described in **Table 4**.

The study network includes one (1) signalized intersections and eight (8) stop controlled intersections as noted in **Table 4**. The study intersections are shown in **Figure 4**.

^{**} Land Use 931 Quality Restaurant does not provide entering and exiting distributions for the AM peak hour trips.

Table 4 Intersection Control Summary								
Intersection	Control							
Spring Street at Armstead Place/Georgia Tech Existing Driveway 1	Signal							
West Peachtree Street at Armstead Place	Stop Control							
3. West Peachtree Street at 4 th Street	Stop Control							
Spring Street at 4 th Street/Williams Street	Stop Control							
5. 4 th Street at Georgia Tech Existing Driveway 2	Stop Control							
6. Williams Street at Georgia Tech Existing Driveway 3	Stop Control							
7. Williams Street at 5 th Street	Stop Control							
Armstead Place at Proposed Driveway 1	Stop Control							
9. 4 th Street at Proposed Driveway 2	Stop Control							

Each of the above listed intersections was analyzed for the Existing 2016 conditions, the Projected 2018 No-Build conditions, and the Projected 2018 Build conditions. The Projected 2018 No-Build conditions represent the existing traffic volumes grown for two (2) years at one percent per year throughout the study network. The Projected 2018 Build conditions add the project trips associated with the Georgia Tech HPCC development to the Projected 2018 No-Build conditions.

3.5 Existing Roadway Facilities

Roadway classification descriptions and estimated Average Daily Traffic (ADT) for the entire study area are provided in **Table 5**.

ADTs were collected using 24-hour pneumatic tube counts for 5th Street, Spring Street, and West Peachtree Street. ADTs were estimated for Armstead Place, 4th Street, and Williams Street, based on the PM Peak Hour volume.

Table 5 Roadway Classification and ADTs										
Roadway	No. of Lanes	ADT	Posted Speed Limit (MPH)	GDOT Classification						
Spring Street	4	17,719	35	Minor Arterial						
West Peachtree Street	4	15,160	30	Minor Arterial						
Armstead Place	2	500	25*	Local Road						
4 th Street	2	1,800	25	Local Road						
Williams Street	2	1,600	25*	Major Collector						
5 th Street	2	7,789	25	Local Road						

^{*} Estimated speed limit as no speed limit is posted.

4.0 TRIP GENERATION

As stated previously, gross trips associated with the proposed development were estimated using the *Institute of Transportation Engineers' (ITE) Trip Generation Manual, Ninth Edition, 2012*, using equations where available. Trip generation for this proposed development is calculated based upon the following land uses: Data Center (ITE 160), General Office Building (ITE 710), Specialty Retail Center (ITE 826), Quality Restaurant (ITE 931), High-Turnover (Sit-Down) Restaurant (ITE 932), and Fast-Food Restaurant without Drive-Through Window (ITE 932).

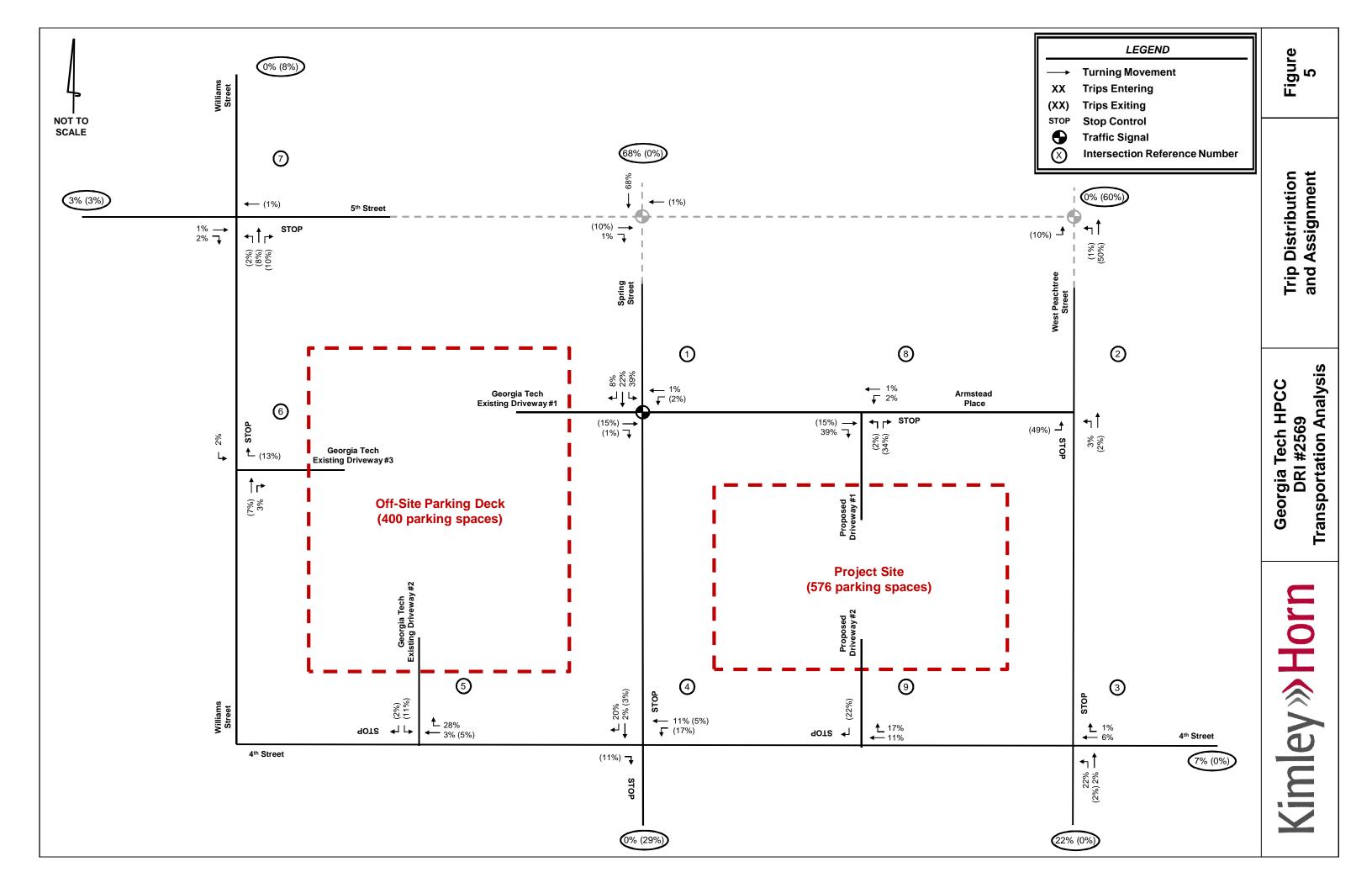
Mixed-use vehicle trip reductions were taken according to the *ITE Trip Generation Handbook, Third Edition, 2014*. Total internal capture and vehicle trip reduction between the land uses is expected to be 18.7% daily, 20.0% for the AM peak hour, and 5.1% for the PM peak hour as a result of the anticipated interaction between the office, retail, and restaurant land uses within the proposed development.

Due to the Georgia Tech HPCC development being located in a region core and the adjacent land uses in the area, an alternative transportation (walking, bicycle, and transit) reduction was applied for the Georgia Tech HPCC project trips. An alternative transportation mode reduction of 25%, consistent with GRTA's Letter of Understanding, was applied to all land uses for this study.

In accordance with the GRTA LOU, pass-by reductions were not taken. As the project site is located in the heart of Midtown Atlanta next to Georgia Tech, an area with heavy pedestrian and bicyclist volumes, the nature of the restaurant and retail on the proposed site will generate limited vehicular pass-by trips. Pass-by trips are more likely to be pedestrian or bicyclist trips.

The total (net) trips generated and analyzed in this report are listed in **Table 6**.

Table 6 Net Trip Generation										
	D	Daily Traffic			l Peak Ho	our	PM Peak Hour			
	Total	Enter	Exit	Total	Enter	Exit	Total	Enter	Exit	
Gross Project Trips	12,858	6,429	6,429	1,280	974	291	1,157	382	775	
Mixed-Use Reduction	-2,642	-1,321	-1,321	-262	-131	-131	-64	-32	-32	
Alternative Mode Reduction	-2,899	-1,450	-1,449	-268	-222	-42	-298	-92	-206	
Pass-By Reduction	-0	-0	-0	-0	-0	-0	-0	-0	-0	
Net New Trips	8,695	3,658	3,659	799	664	124	894	275	619	


A more detailed trip generation analysis summary table is provided in Appendix D.

5.0 Trip Distribution and Assignment

New trips were distributed onto the roadway network using the percentages developed as described in *Section 3.2* of this report, and as agreed to during methodology discussions with GRTA, ARC, GDOT, and City of Atlanta staff.

Figure 5 displays the anticipated distribution and assignment of the office, retail and restaurant project trips throughout the study roadway network. These trip assignment percentages were applied to the net new trips expected to be generated by the development, and the volumes were assigned to the roadway network. The combined peak hour project trips by turning movement throughout the study network, anticipated to be generated by the proposed Georgia Tech HPCC development, are shown in **Figure 6**.

Detailed intersection volume worksheets are provided in Appendix E.

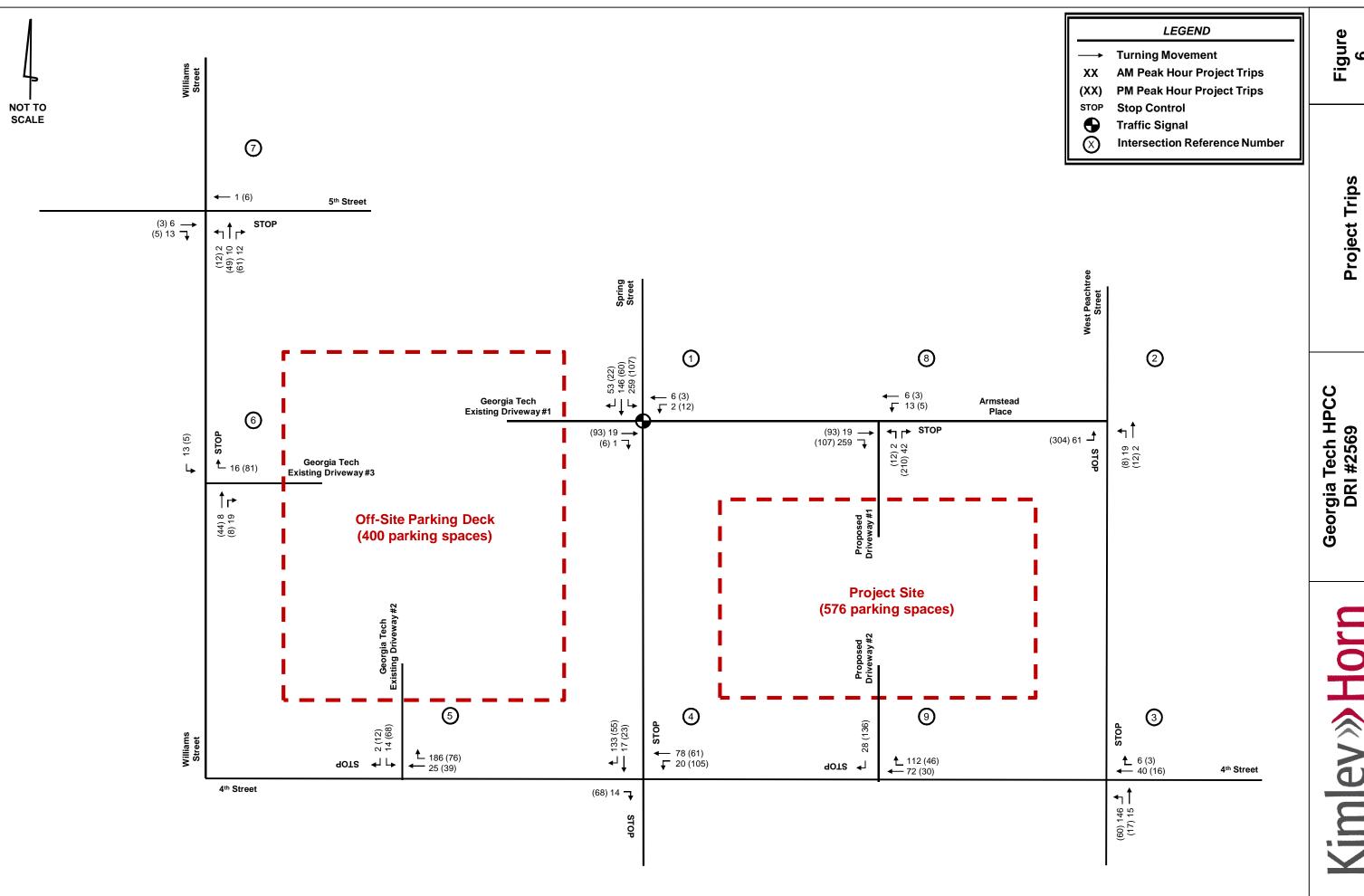


Figure 6

Transportation Analysis

Kimley » Horn

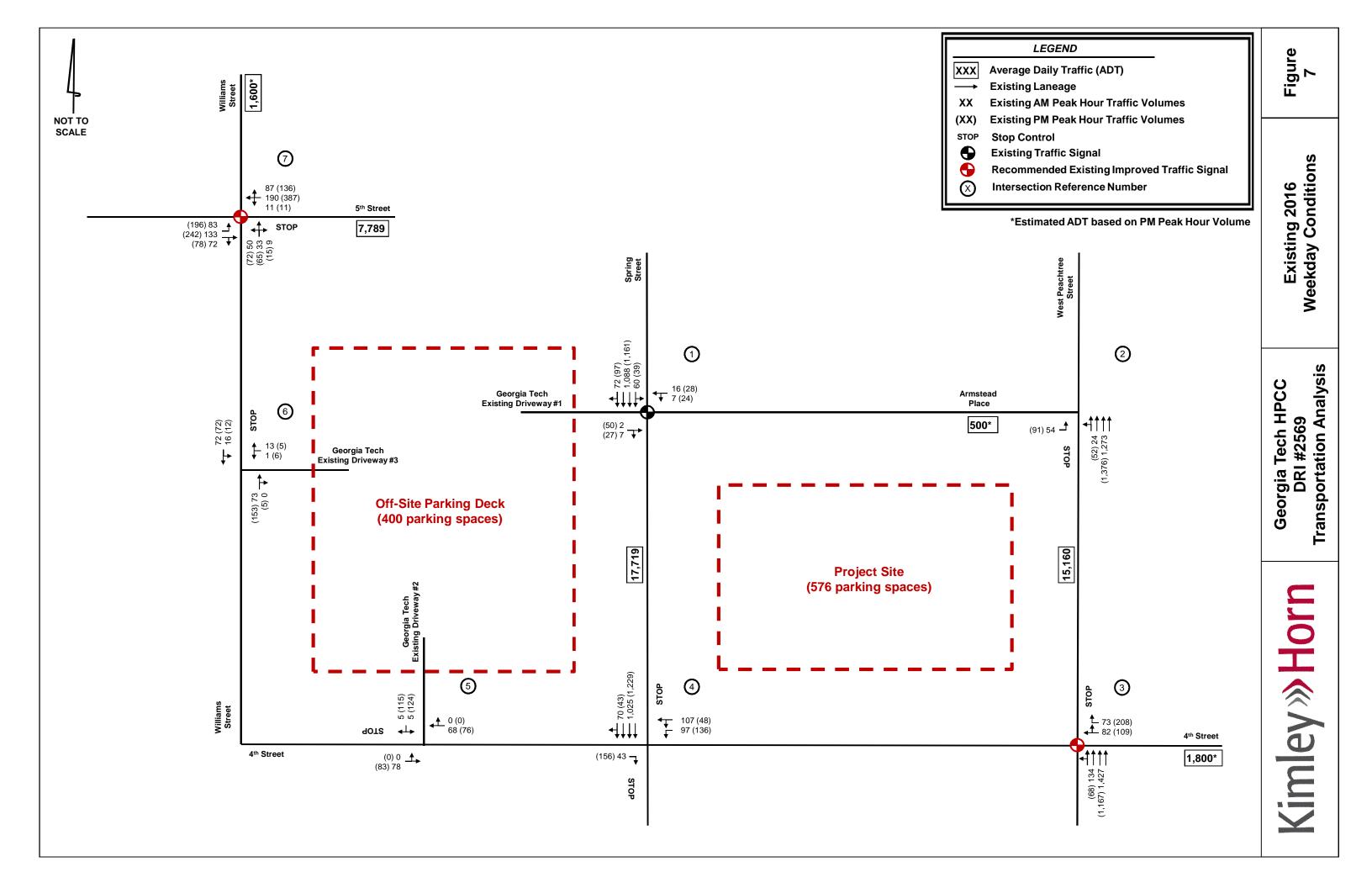
6.0 TRAFFIC ANALYSIS

6.1 Existing 2016 Conditions

The observed existing peak hour traffic volumes were entered into *Synchro 9.0*, and capacity analyses were performed for the AM and PM peak hours. The existing peak hour traffic volumes are displayed in **Figure 7**, and the results of the capacity analyses for the Existing 2016 conditions are shown in **Table 7**. Detailed *Synchro* analysis reports are available upon request. Signal timings were optimized for the Existing 2016 Improved conditions.

	Table 7 Existing 2016 Intersection Levels-of-Service LOS (delay in seconds)										
		LOS	Existin	g 2016 Con	ditions	Existing 2016 Improved					
	Intersection	Std.	Control	AM Peak Hour	PM Peak Hour	Control	AM Peak Hour	PM Peak Hour			
1.	Spring Street at Armstead Place/ Georgia Tech Existing Driveway 1	D	Signal	A (4.4)	A (8.2)	**	**	**			
2.	West Peachtree Street at Armstead Place	D	EB Stop NBL	B (13.3) A (1.0)	C (17.1) A (1.9)	**	**	**			
3.	West Peachtree Street at 4 th Street	E***	WB Stop NBL	F (322.7) A (3.5)	F (218.3) A (2.5)	Signal	A (8.1)	B (15.2)			
4.	Spring Street at 4 th Street/ Williams Street	E***	EB Stop WB Stop	A (9.9) D (33.5)	B (10.9) E (36.0)	**	**	**			
5.	4 th Street at Georgia Tech Existing Driveway 2	D	SB Stop	A (9.1)	B (11.3)	**	**	**			
6.	Williams Street at Georgia Tech Existing Driveway 3	D	WB Stop SBL	A (8.8) A (1.5)	A (10.0) A (1.1)	**	**	**			
7.	Williams Street at 5 th Street	E***	NB Stop EBL	E (40.7) A (8.6)	F (Err)* B (12.1)	Signal	B (10.8)	B (13.2)			

^{*} Delay is too large to be calculated


As shown in **Table 7**, the side street movement for Intersection 3 and Intersection 7 operate at LOS E or LOS F. While low levels-of-service for side street approaches are not uncommon, these delays are relatively high. Preliminary traffic signal warrant analyses were performed, and consideration may be given by the City of Atlanta for the following improvements.

^{**} No improvements recommended at this intersection

^{***} Per the GRTA LOU, the LOS standard is LOS E for intersections that operate at LOS E or LOS F in existing conditions

Based on the Existing 2016 conditions, the following improvements are recommended:

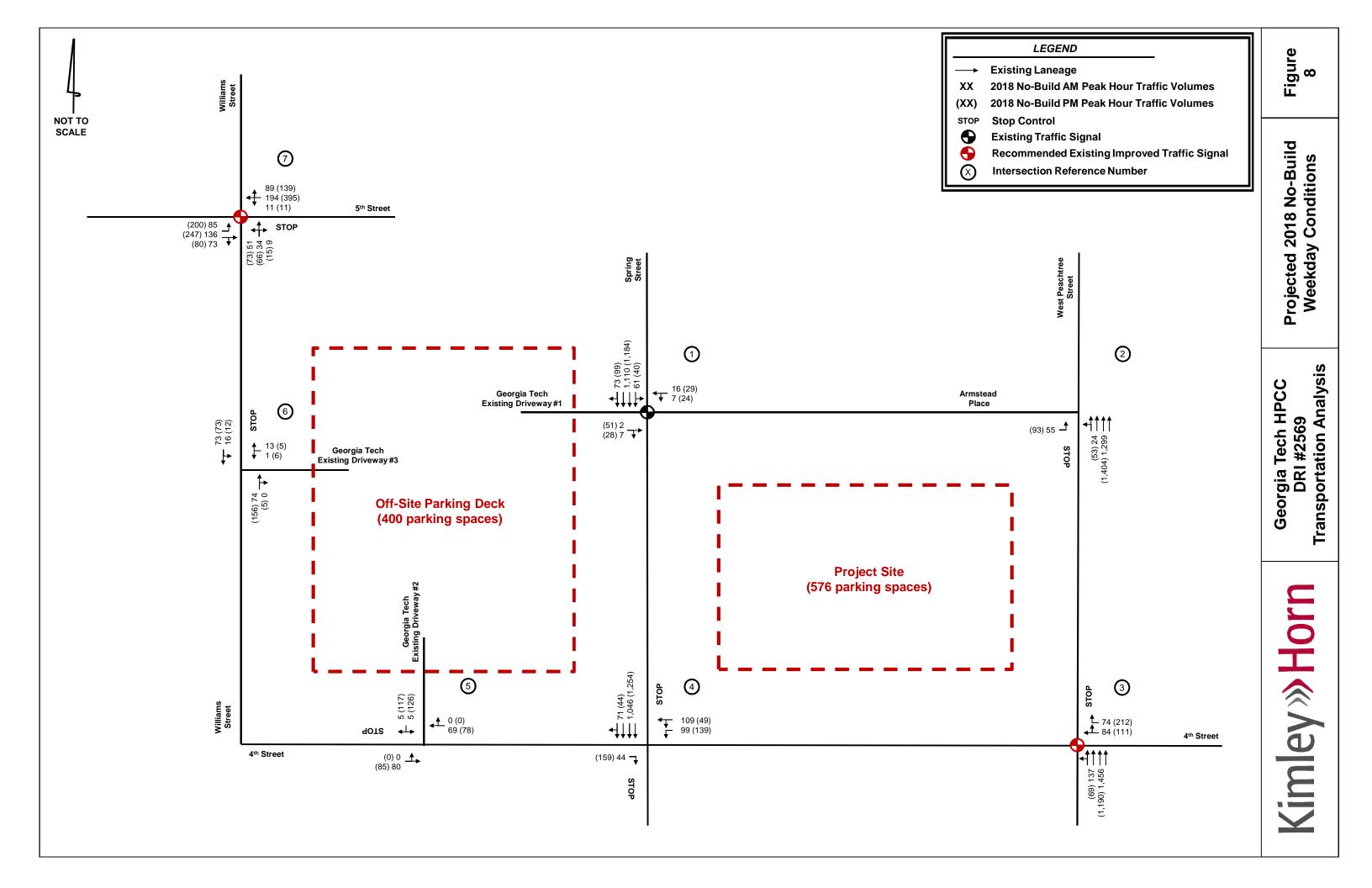
- West Peachtree Street at 4th Street (Int. #3)
 - Install a traffic signal at the intersection preliminary analysis suggests that a traffic signal may be warranted (Warrant 3 – Peak Hour Warrant) based on existing traffic volumes.
- Williams Street at 5th Street (Int. #7)
 - Install a traffic signal at the intersection preliminary analysis suggests that a traffic signal may be warranted (Warrant 3 – Peak Hour Warrant and Warrant 4 – Pedestrian Warrant) based on existing traffic volumes and pedestrian volumes.
 - Restrict the northbound right-turn on red (to reduce vehicle and pedestrian conflicts).

6.2 Projected 2018 No-Build Conditions

To account for growth in the vicinity of the proposed development, the existing traffic volumes were increased for two (2) years at one percent per year throughout the study network. These volumes were entered into *Synchro 9.0*, and capacity analyses were performed. The Projected 2018 No-Build conditions were analyzed using existing roadway geometry and existing intersection control types. Signal timings were optimized for the Projected 2018 No-Build Improved conditions.

The intersection laneage and traffic volumes for the Projected 2018 No-Build conditions are shown in **Figure 8**. The results of the capacity analyses for the Projected 2018 No-Build conditions with existing laneage and control types are shown in **Table 8**. Detailed *Synchro* analysis reports are available upon request.

	Table 8 Projected 2018 No-Build Intersection Levels-of-Service LOS (delay in seconds)										
	Interception	LOS	•	ted 2018 No Conditions	-Build	Projected 2018 No-Build Improved					
	Intersection		Control	AM Peak Hour	PM Peak Hour	Control	AM Peak Hour	PM Peak Hour			
1.	Spring Street at Armstead Place/ Georgia Tech Existing Driveway 1	D	Signal	A (4.4)	A (8.2)	**	**	**			
2.	West Peachtree Street at Armstead Place	D	EB Stop NBL	B (13.5) A (1.0)	C (17.5) A (1.9)	**	**	**			
3.	West Peachtree Street at 4 th Street	E***	WB Stop NBL	F (371.6) A (3.5)	F (240.8) A (2.5)	Signal	A (8.2)	B (15.2)			
4.	Spring Street at 4 th Street/ Williams Street	E***	EB Stop WB Stop	A (9.9) E (36.2)	B (10.9) E (38.2)	**	**	**			
5.	4 th Street at Georgia Tech Existing Driveway 2	D	SB Stop	A (9.1)	B (11.4)	**	**	**			
6.	Williams Street at Georgia Tech Existing Driveway 3	D	WB Stop SBL	A (8.8) A (1.4)	A (10.0) A (1.1)	**	**	**			
7.	Williams Street at 5 th Street	E***	NB Stop EBL	E (43.2) A (8.6)	F (Err)* B (12.3)	Signal	B (10.9)	B (13.5)			


^{*} Delay is too large to be calculated

As shown in **Table 8**, the side street movement for Intersection 3 and Intersection 7 operate at LOS E or LOS F. Traffic signals were previously recommended for West Peachtree Street at 4th Street (Int. #3) and Williams Street at 5th Street (Int. #7) in Section 6.1 Existing 2016 conditions and are therefore reflected in the Projected 2018 No-Build Improved conditions.

Therefore, there are no additional recommended improvements for the Projected 2018 No-Build conditions scenario.

^{**} No improvements recommended at this intersection

^{***} Per the GRTA LOU, the LOS standard is LOS E for intersections that operate at LOS E or LOS F in existing conditions

6.3 Projected 2018 Build Conditions

The traffic associated with the proposed Georgia Tech HPCC development was added to the Projected 2018 No-Build volumes. These volumes were then entered into *Synchro 9.0*, and capacity analyses were performed. The Projected 2018 Build conditions were analyzed using the proposed laneage and intersection control types shown in the DRI site plan. Signal timings were optimized for the Projected 2018 Build Improved conditions.

The intersection laneage and traffic volumes used for the Projected 2018 Build conditions are shown in **Figure 9**. The results of the capacity analyses for the Projected 2018 Build conditions with proposed laneage and control types are shown in **Table 9**. Detailed *Synchro* analysis reports are available upon request.

	Table 9 Projected 2018 Build Intersection Levels-of-Service LOS (delay in seconds)											
	Intersection	LOS	Proj	jected 2018 B Conditions	uild	Projected 2018 Build Improved						
	mersection	Std.	Control	AM Peak Hour	PM Peak Hour	Control	AM Peak Hour	PM Peak Hour				
1.	Spring Street at Armstead Place/ Georgia Tech Existing Driveway 1	D	Signal	A (5.5)	B (14.0)	**	**	**				
2.	West Peachtree Street at Armstead Place	D	EB Stop NBL	C (16.9) A (1.6)	F (139.4) A (2.1)	**	**	**				
3.	West Peachtree Street at 4 th Street	E***	WB Stop NBL	F (7,383.6) A (5.2)	F (461.2) A (3.7)	Signal	A (10.0)	B (15.5)				
4.	Spring Street at 4 th Street/ Williams Street	E***	EB Stop WB Stop	B (10.4) F (180.0)	C (19.3) F (593.8)	Signal	B (19.2)	A (9.8)				
5.	4 th Street at Georgia Tech Existing Driveway 2	D	SB Stop	B (10.4)	B (14.8)	**	**	**				
6.	Williams Street at Georgia Tech Existing Driveway 3	D	WB Stop SBL	A (9.0) A (2.3)	B (10.9) A (1.6)	**	**	**				
7.	Williams Street at 5 th Street	E***	NB Stop EBL	F (52.1) A (8.6)	F (Err)* B (12.3)	Signal	B (11.2)	B (16.1)				
8.	Armstead Place at Proposed Driveway 1	D	NB Stop WBL	B (10.3) A (2.8)	B (12.3) A (0.7)	**	**	**				
9.	4 th Street at Proposed Driveway 2	D	SB Stop	A (9.8)	B (10.3)	**	**	**				

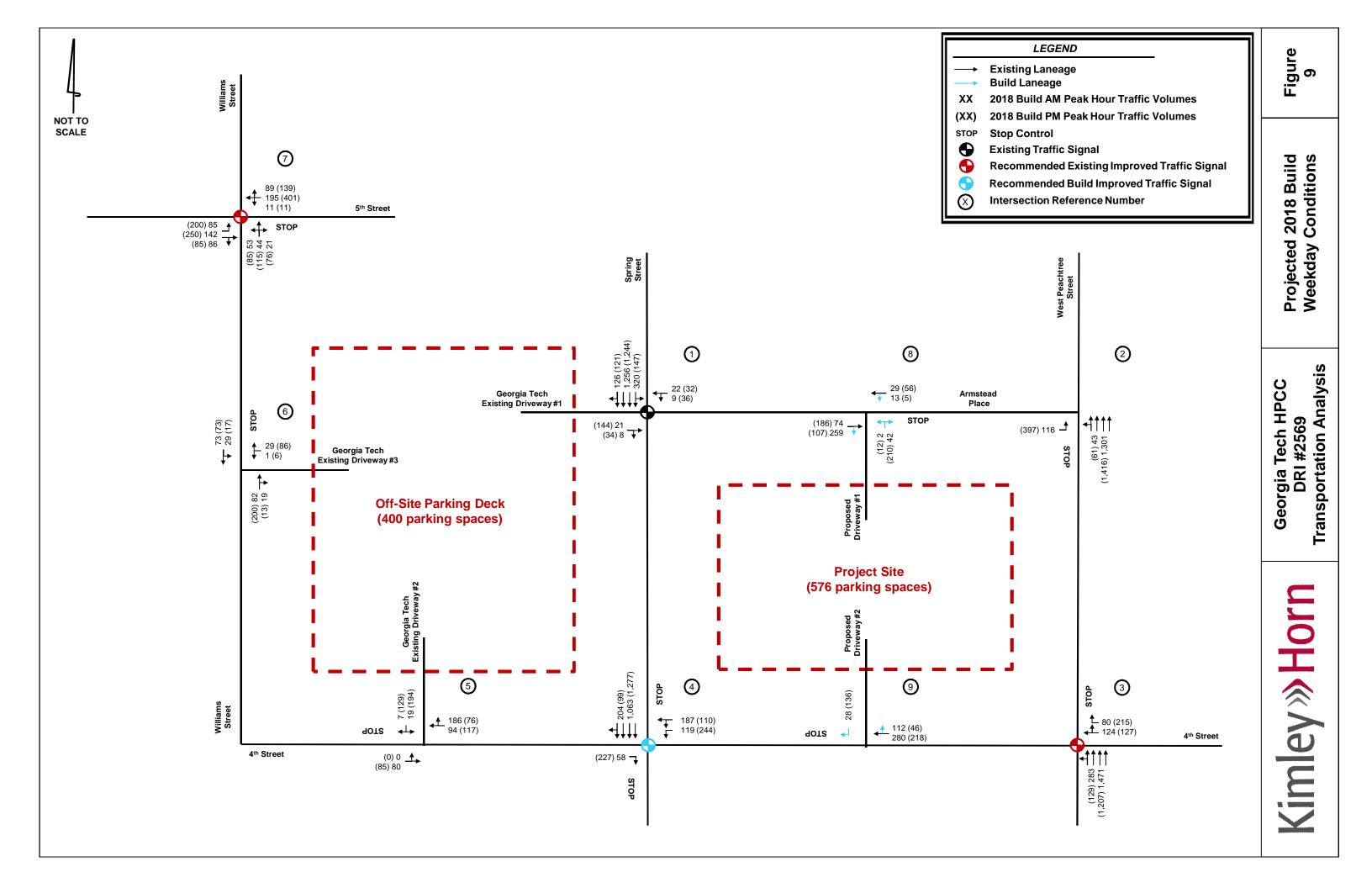
^{*} Delay is too large to be calculated

019292007 23 May 2016

^{**} No improvements recommended at this intersection

^{***} Per the GRTA LOU, the LOS standard is LOS E for intersections that operate at LOS E or LOS F in existing conditions

As shown in **Table 9**, the side street movement for Intersection 2, Intersection 3, Intersection 4, and Intersection 7 operate at LOS E or LOS F. Traffic signals were previously recommended for West Peachtree Street at 4th Street (Int. #3) and Williams Street at 5th Street (Int. #7) in Section 6.1 Existing 2016 conditions and are therefore reflected in the Projected 2018 Build Improved conditions.


The intersection of West Peachtree Street and Armstead Place (Int. #2) experiences increased delay in the Projected 2018 Build conditions. While a traffic signal would improve the operations at this intersection, it is not recommended due to the proximity of nearby signals. The intersection is located approximately 135 feet south of the signalized intersection of West Peachtree Street at 5th Street (not studied) and 290 feet north of the intersection of West Peachtree Street at 4th Street (Int. #3) which is recommended to be signalized in the Existing 2016 conditions. If a traffic signal is installed at the upstream intersection of West Peachtree Street at 4th Street (Int. #3), it may provide adequate gaps for vehicles on the side-street at West Peachtree Street at Armstead Place (Int. #2). The City of Atlanta should continue to monitor the operations at this intersection.

Based on the Projected 2018 Build conditions, the following improvements are recommended:

- Armstead Place at Proposed Driveway 1 (Int. #8)
 - Construct one ingress lane on-site along Proposed Driveway 1.
 - Construct one egress lane on-site along Proposed Driveway 1 one shared northbound left-turn/right-turn lane.
- 4th Street at Proposed Driveway 2 (Int. #9)
 - Construct one ingress lane on-site along Proposed Driveway 2.
 - Construct one egress lane on-site along Proposed Driveway 2 one southbound rightturn only lane.

Based on the Projected 2018 Build conditions, the following additional improvements <u>may be</u> considered:

- Spring Street at 4th Street (Int. #4)
 - Install a traffic signal at the intersection preliminary analysis indicates that a traffic signal will improve the operation of the intersection. While analysis suggests that the intersection may not warrant a traffic signal based on traffic volumes alone, a traffic signal will be beneficial for pedestrians crossing Spring Street as the Georgia Tech HPCC development will utilize parking in the existing Georgia Tech Parking Deck on the west side of Spring Street.

6.4 Alternative Analysis (City/Midtown Alliance Project)

As requested by the City of Atlanta and the Midtown Alliance as noted in the GRTA LOU, an alternative analysis with a two-way conversion of 4th Street was performed. Midtown Alliance is currently studying the two-way conversion of 4th Street from Spring Street to Myrtle Street, which is adjacent to the project site. This section is provided for informational purposes, and <u>is not</u> being proposed as part of the Georgia Tech HPCC development.

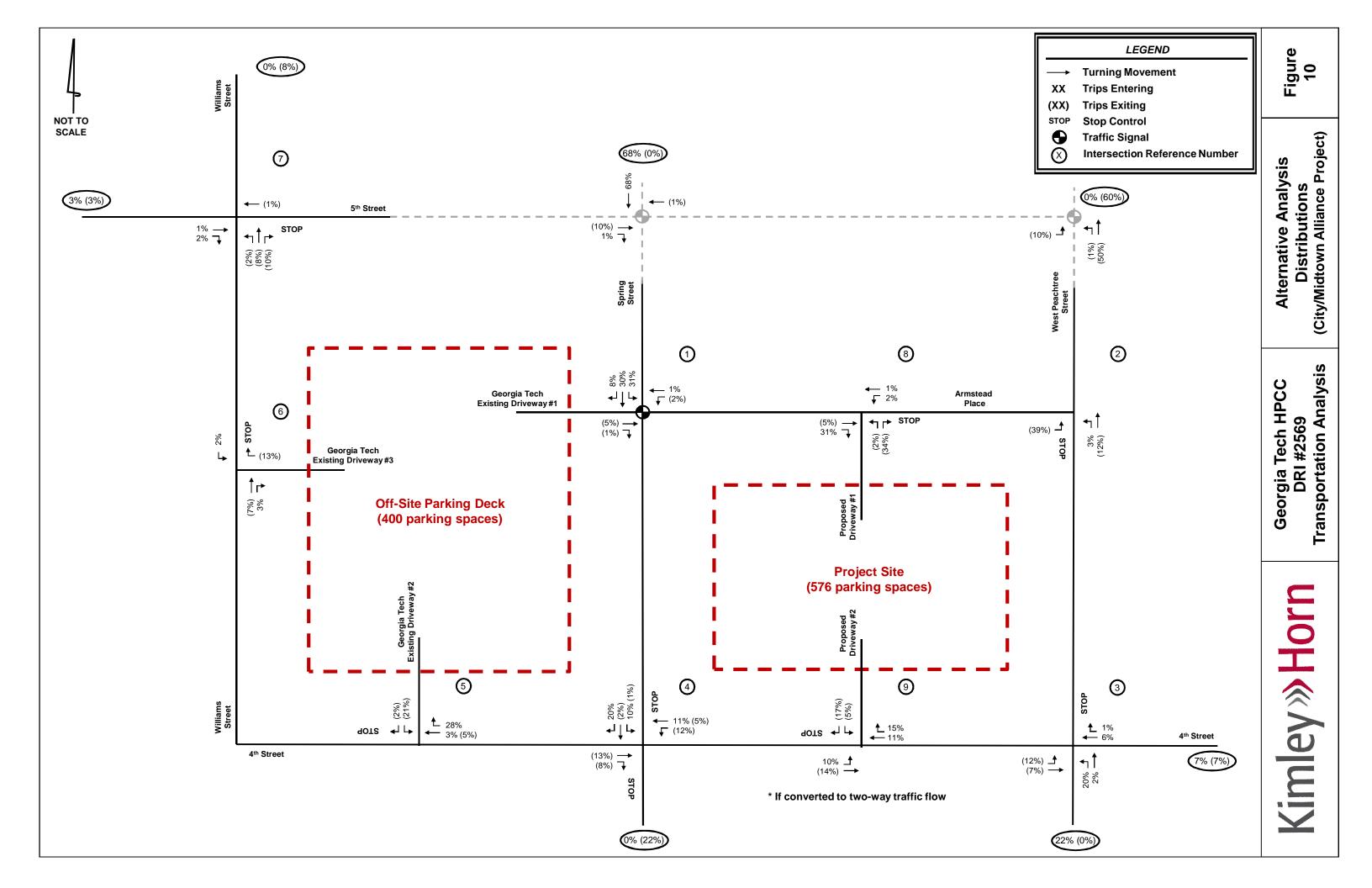
The two-way conversion of 4th Street will require the following restriping to the study network:

- West Peachtree Street at 4th Street (Int. #3)
 - Restripe the northbound approach along West Peachtree Street to have one shared left-turn/through lane, two exclusive through lanes, and one shared through/right-turn lane.
 - Restripe the eastbound approach along 4th Street to have one shared left-turn/through lane and one receiving lane.
 - Restripe the westbound approach along 4th Street to have one shared through/right-turn lane and one receiving lane.
- Spring Street at 4th Street (Int. #4)
 - Restripe the southbound approach along Spring Street to have one shared left-turn/through lane, two exclusive through lanes, and one shared through/right-turn lane.
 - Restripe the eastbound approach along 4th Street to have one shared through/right-turn lane and one receiving lane.
 - Restripe the westbound approach along 4th Street to have one shared left-turn/through lane and one receiving lane.
- 4th Street at Proposed Driveway 2 (Int. #9)
 - Restripe the southbound approach along Proposed Driveway 2 to have one shared left-turn/right-turn lane.
 - Restripe the eastbound approach along 4th Street to have one shared left-turn/through lane and one receiving lane.
 - Restripe the westbound approach along 4th Street to have one shared through/right-turn lane and one receiving lane.

Figure 10 shows the Alternative Analysis Distributions, **Figure 11** shows the Alternative Analysis Project Trips, and **Figure 12** shows the Projected 2018 Build Alternative conditions.

The results of the alternative capacity analyses are shown in **Table 10**. Detailed *Synchro* analysis reports are available upon request.

Table 10 Projected 2018 Build Alternative Intersection Levels-of-Service LOS (delay in seconds)										
Interception		LOS	Projected 2018 Build Alternative Conditions			Projected 2018 Build Alternative Improved				
	Intersection		Control	AM Peak Hour	PM Peak Hour	Control	AM Peak Hour	PM Peak Hour		
1.	Spring Street at Armstead Place/ Georgia Tech Existing Driveway 1	D	Signal	A (4.9)	B (15.3)	**	**	**		
2.	West Peachtree Street at Armstead Place	D	EB Stop NBL	C (16.3) A (1.6)	F (88.7) A (2.1)	**	**	**		
3.	West Peachtree Street at 4 th Street	E***	EB Stop WB Stop NBL	F (Err)* F (Err)* A (5.1)	F (Err)* F (Err)* A (3.5)	Signal	C (21.6)	C (30.9)		
4.	Spring Street at 4 th Street/ Williams Street	E***	EB Stop WB Stop SBL	C (22.9) F (Err)* A (4.6)	F (361.8) F (Err)* A (4.5)	Signal	B (19.7)	C (32.2)		
5.	4 th Street at Georgia Tech Existing Driveway 2	D	SB Stop	B (10.7)	C (17.5)	**	**	**		
6.	Williams Street at Georgia Tech Existing Driveway 3	D	WB Stop SBL	A (9.0) A (2.3)	B (10.9) A (1.6)	**	**	**		
7.	Williams Street at 5 th Street	E***	NB Stop EBL	F (52.1) A (8.6)	F (Err) B (12.3)	Signal	B (11.4)	B (16.0)		
8.	Armstead Place at Proposed Driveway 1	D	NB Stop WBL	B (10.0) A (2.7)	B (11.0) A (0.7)	**	**	**		
9.	4 th Street at Proposed Driveway 2	D	SB Stop EBL	B (11.9) A (2.6)	B (12.9) A (0.9)	**	**	**		


^{*} Delay is too large to be calculated

Results of the alternative analysis show that the side street movement for Intersection 2, Intersection 3, Intersection 4, and Intersection 7 operate at LOS E or LOS F. Traffic signals were previously recommended for West Peachtree Street at 4th Street (Int. #3) and Williams Street at 5th Street (Int. #7) in Section 6.1 Existing 2016 conditions and are therefore reflected in the Projected 2018 Build Alternative Improved conditions.

With the two-way conversion of 4th Street, the intersection of Spring Street at 4th Street (Int. #4) experiences increased delay. Preliminary analysis indicates that a signal would improve the operations at this intersection and benefit pedestrians; a traffic signal is an improvement being considered in the Projected 2018 Build conditions. Additionally, the two-way conversion of 4th Street will improve the operations at the intersection of West Peachtree Street at Armstead Place (Int. #2) as traffic will also be able to travel eastbound along 4th Street. Overall, the two-way conversion of 4th Street will help create a more balanced network surrounding the project site.

^{**} No improvements recommended at this intersection

^{***} Per the GRTA LOU, the LOS standard is LOS E for intersections that operate at LOS E or LOS F in existing conditions

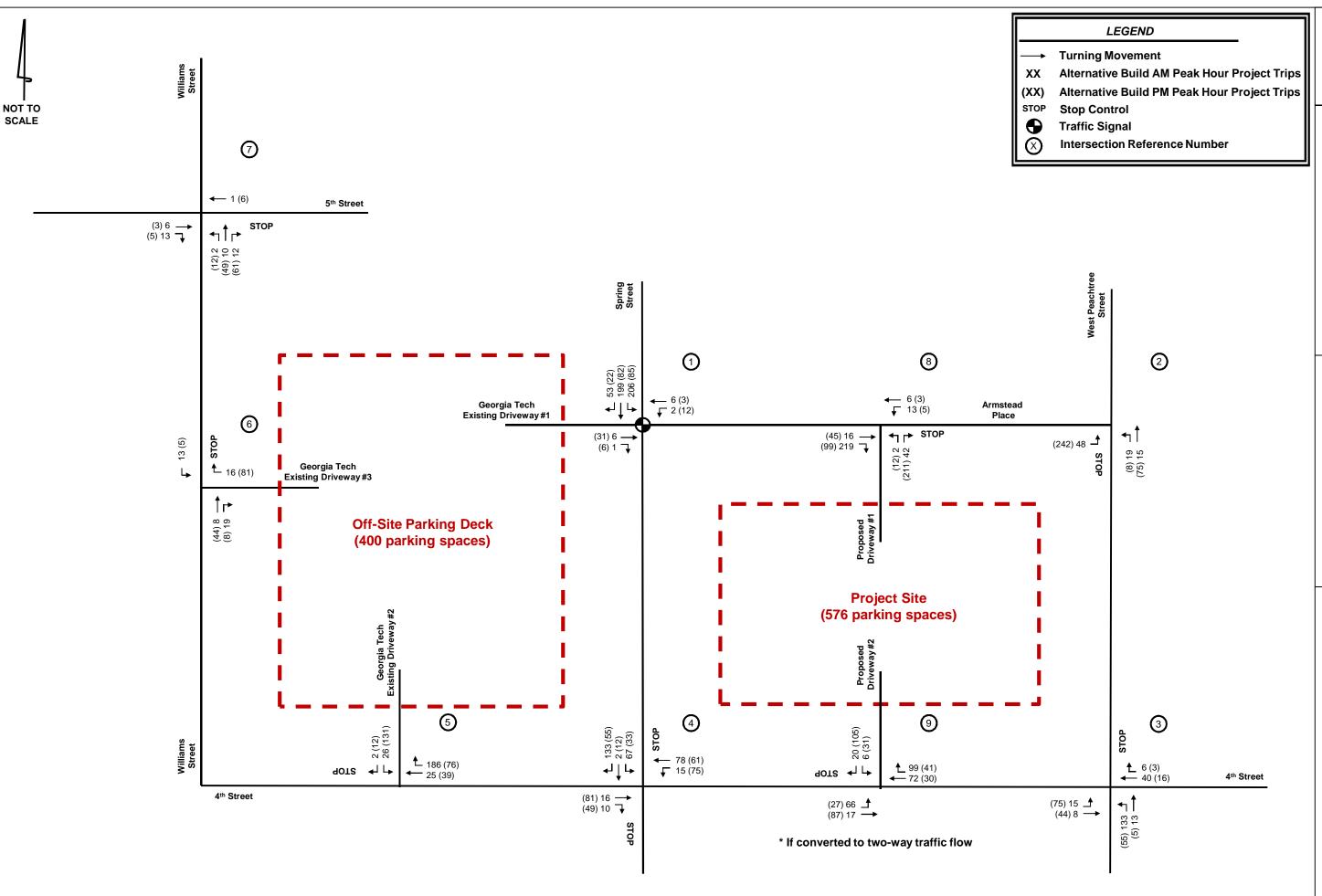
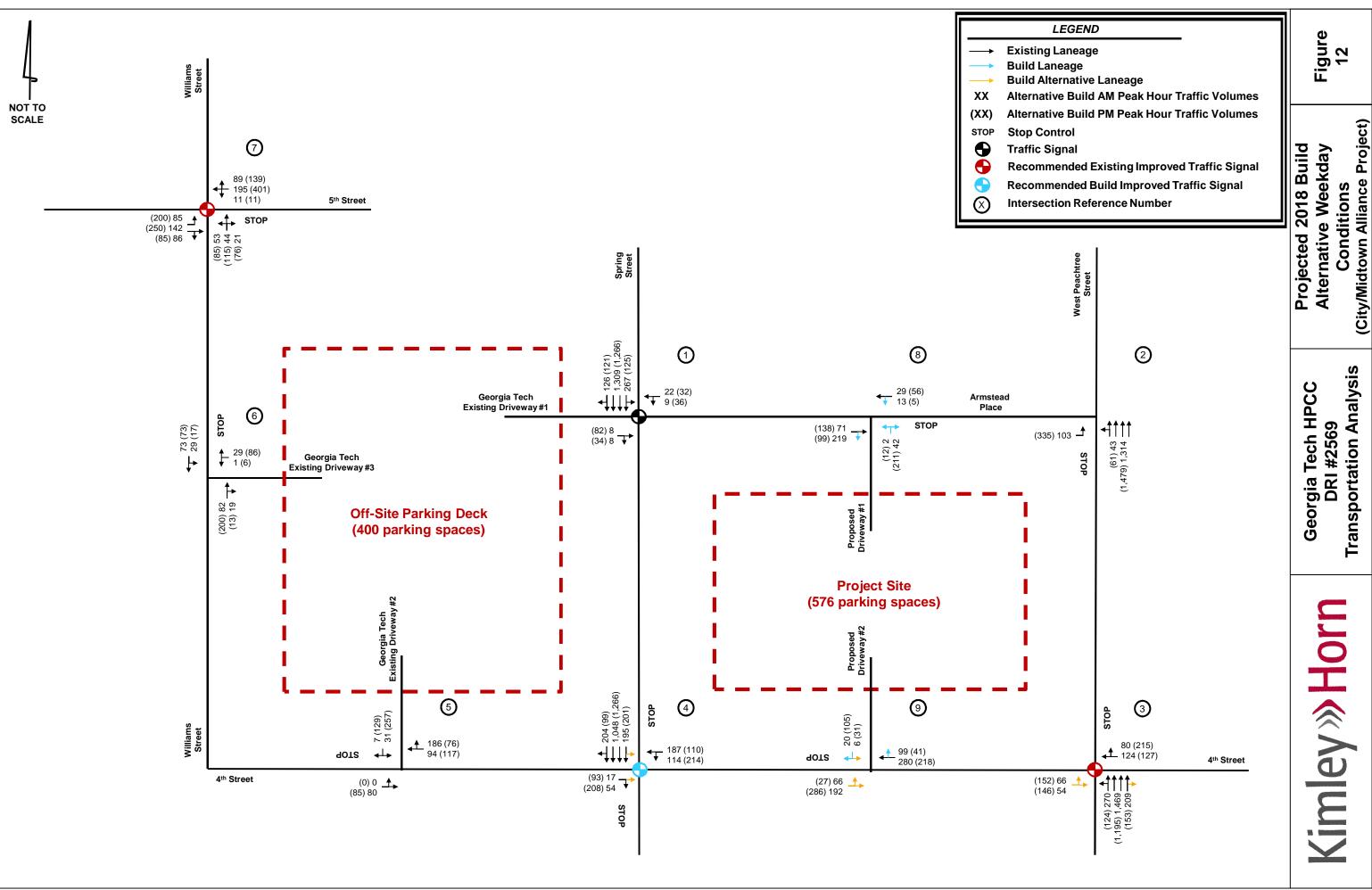



Figure 11

Alternative Analysis Project Trips (City/Midtown Alliance Project)

Transportation Analysis Georgia Tech HPCC DRI #2569

Kimley » Horn

Transportation Analysis

7.0 INGRESS/EGRESS ANALYSIS

Vehicular access to the Georgia Tech HPCC development is proposed at five (5) locations. Site driveway locations are discussed in Section 1.3. Georgia Tech Existing Driveway 1 is currently signalized and is proposed to remain signalized in the Projected 2018 Build conditions. Georgia Tech Existing Driveway 2, Georgia Tech Existing Driveway 3, Proposed Driveway 1, and Proposed Driveway 2 are currently unsignalized and are proposed to remain unsignalized in the Projected 2018 Build conditions. All driveways are proposed to have one ingress lane and one egress lane.

Capacity analyses were performed for the proposed site driveway intersections (Int. #1, #5, #6, #8, #9) using *Synchro 9.0*. The results of the capacity analyses for this intersection (LOS, delay, and recommended laneage) are reported in *Section 6.3* of this report. Based on the Projected 2018 Build conditions, the proposed site driveway intersections are anticipated to operate at an acceptable level-of-service, assuming implementation of the recommended laneage, signalization, and roadway improvements listed in this report.

8.0 IDENTIFICATION OF PROGRAMMED PROJECTS

According to ARC's Transportation Improvement Program, the Regional Transportation Improvement Program, GDOT's Construction Work Program (none at this time), City of Atlanta's programmed projects, and the GA STIP, the following projects are programmed or planned to be completed by the respective years within the vicinity of the proposed development. The identified projects are listed in **Table 11** below.

	Table 11 Programmed Projects							
#	Completion Date	Project ID	Description					
1	2020	AT-271	Juniper Street Bicycle/Pedestrian Facilities – from Ponce de Leon Avenue to 14 th Street					
2	2020	AT-277	Cycle Atlanta: Phase 1.0 – Bicycle Mobility Improvements – Includes a route on West Peachtree Street and Peachtree Street					
3	2040	AR-490	Atlanta Streetcar Expansion – Phase 1 – Includes a route on North Avenue					
4	TBD	AT-278	Midtown Atlanta Regional Activity Center – Pedestrian Mobility and Safety Improvements					

Fact sheets for projects 1-4 are provided in Appendix F.

9.0 Internal Circulation Analysis

The proposed site driveways will provide access to buildings on the site. A detailed copy of the proposed site plan is provided in Appendix C and a full-sized site plan is included in the report submittal.

Mixed-use vehicle trip reductions were taken according to the *ITE Trip Generation Handbook, Third Edition, 2014*. Total internal capture and vehicle trip reduction between the proposed land uses is expected to be 18.7% daily, 20.0% for the AM peak hour, and 5.1% for the PM peak hour as a result of the anticipated interaction between the various land uses within the proposed development.

10.0 COMPLIANCE WITH COMPREHENSIVE PLAN ANALYSIS

The project site currently consists of the three-story vacant Crum and Forster Building, a one-story vacant bank building, a three-story occupied office building, and associated parking. The one-story bank building and three-story office building will be demolished. The Crum and Forster Building will remain. The project site is located in the Special Public Interest (SPI) Zone 16 according to the *City of Atlanta Zoning Ordinance Map* and requires review by the SPI-16 Development Review Committee (DRC).

The most recent 10-Year update to the LCI study for Midtown Atlanta *Greenprint Midtown* focuses on a sustainable approach to the original *Blueprint Midtown* vision. The LCI study discusses decreasing single occupancy vehicle trips and increasing streetscape programs, bicycle plans, and transit/coordinated shuttle services. The LCI focuses on building on a high number of commuters are residents using transit, walking, or bicycling. The Georgia Tech HPCC development aligns with the goals and visions of the LCI study by reducing parking and creating a walkable environment. The project site is located adjacent to Technology Square, an area that already experiences high pedestrian and bicyclist volumes. Additionally, the project site is located in a Region Core area type according to *PLAN 2040 Unified Growth Policy Map*. The Georgia Tech HPCC development plan is consistent with the area type and future land use identified. The land use maps are provided in Appendix B.

Appendix A Site Photo Log

City of Atlanta, Georgia Photograph Sheet

KHA Job No.: 019292007
Date: May 2016

Page:

Armstead Place at Proposed Driveway 1

Photo No. 1

Comments: Proposed Driveway 1 looking west

Photo No. 2

Comments: Proposed Driveway 1 looking east

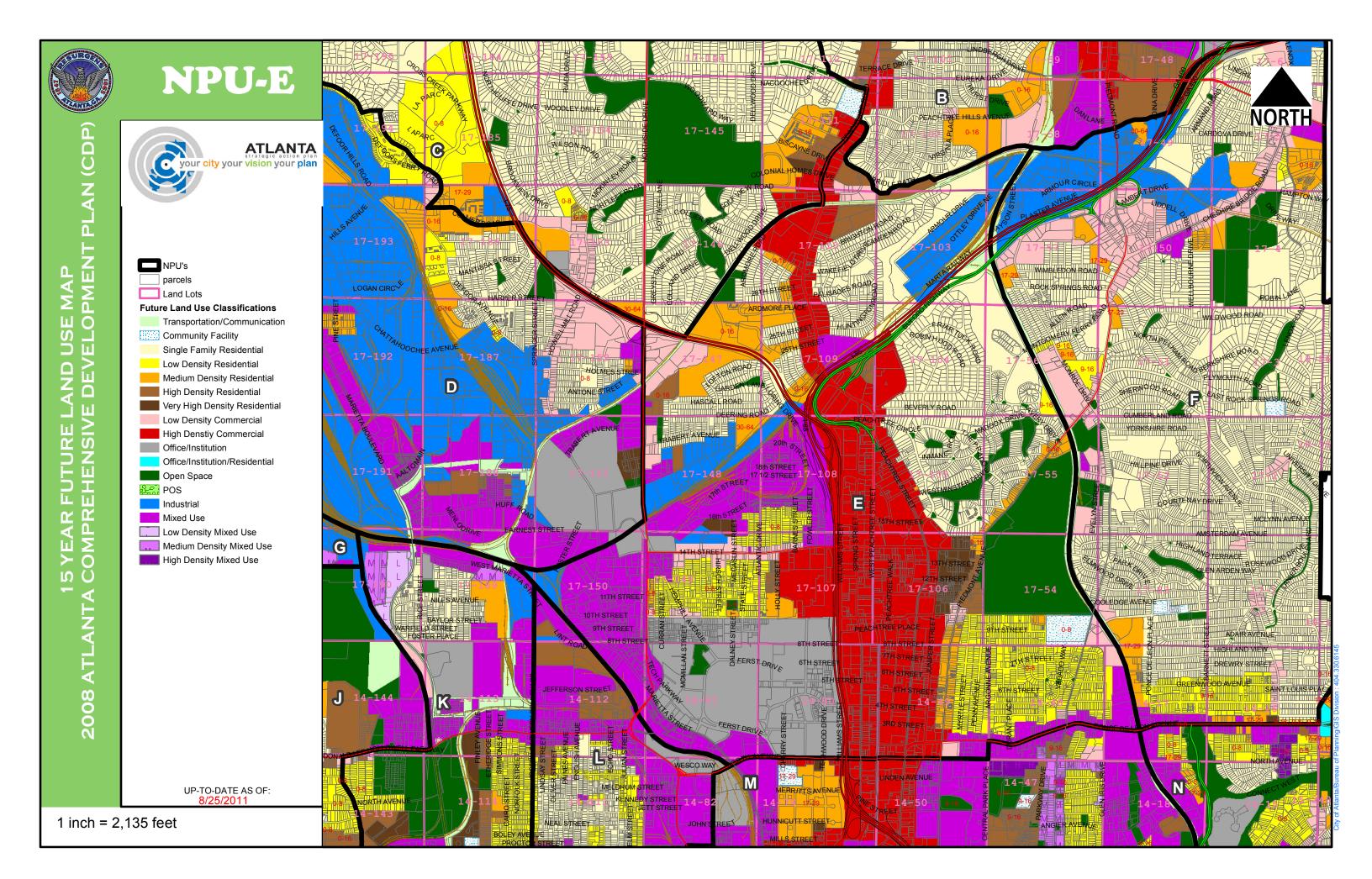
City of Atlanta, Georgia Photograph Sheet

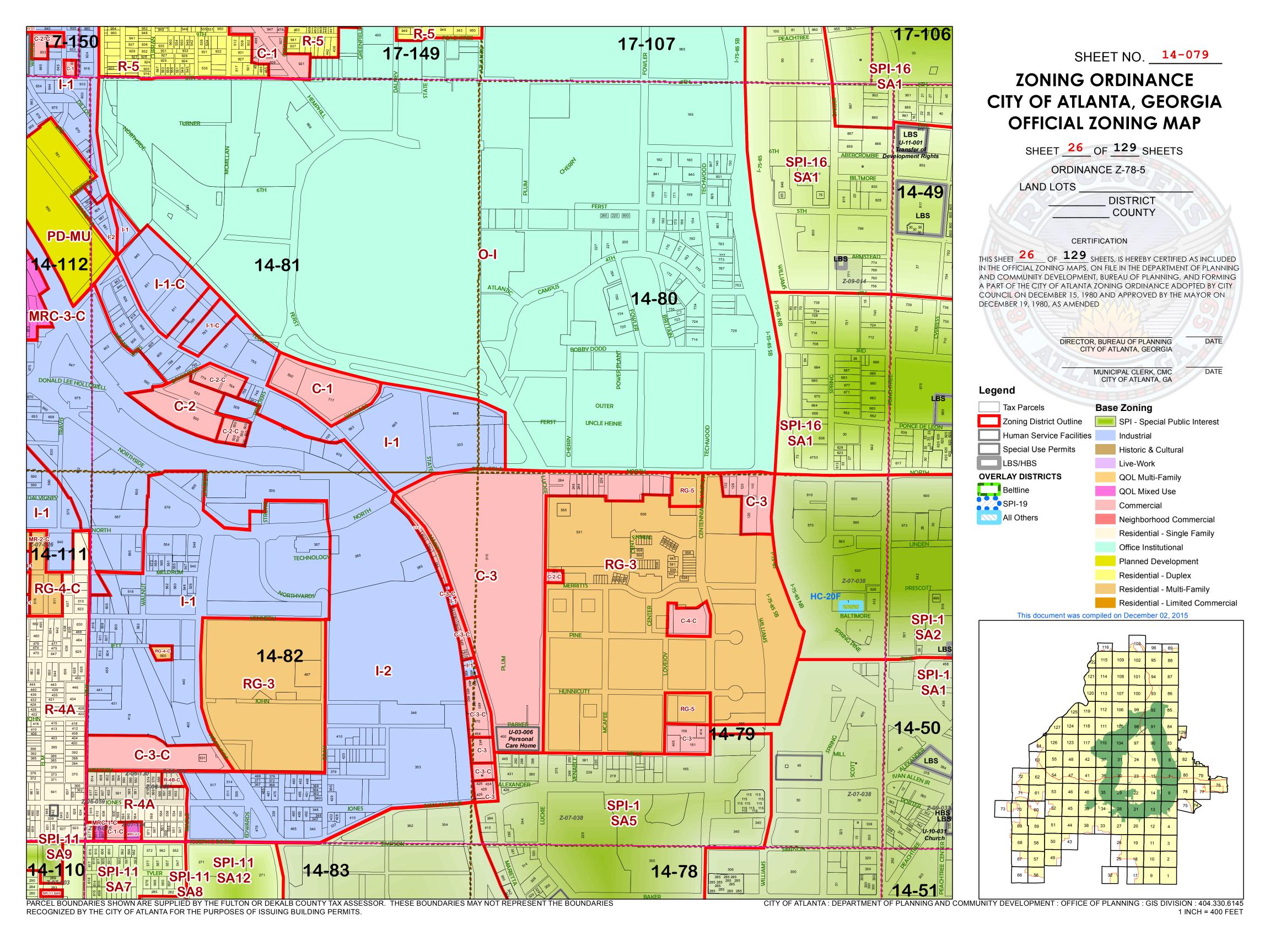
KHA Job No.: 019292007
Date: May 2016

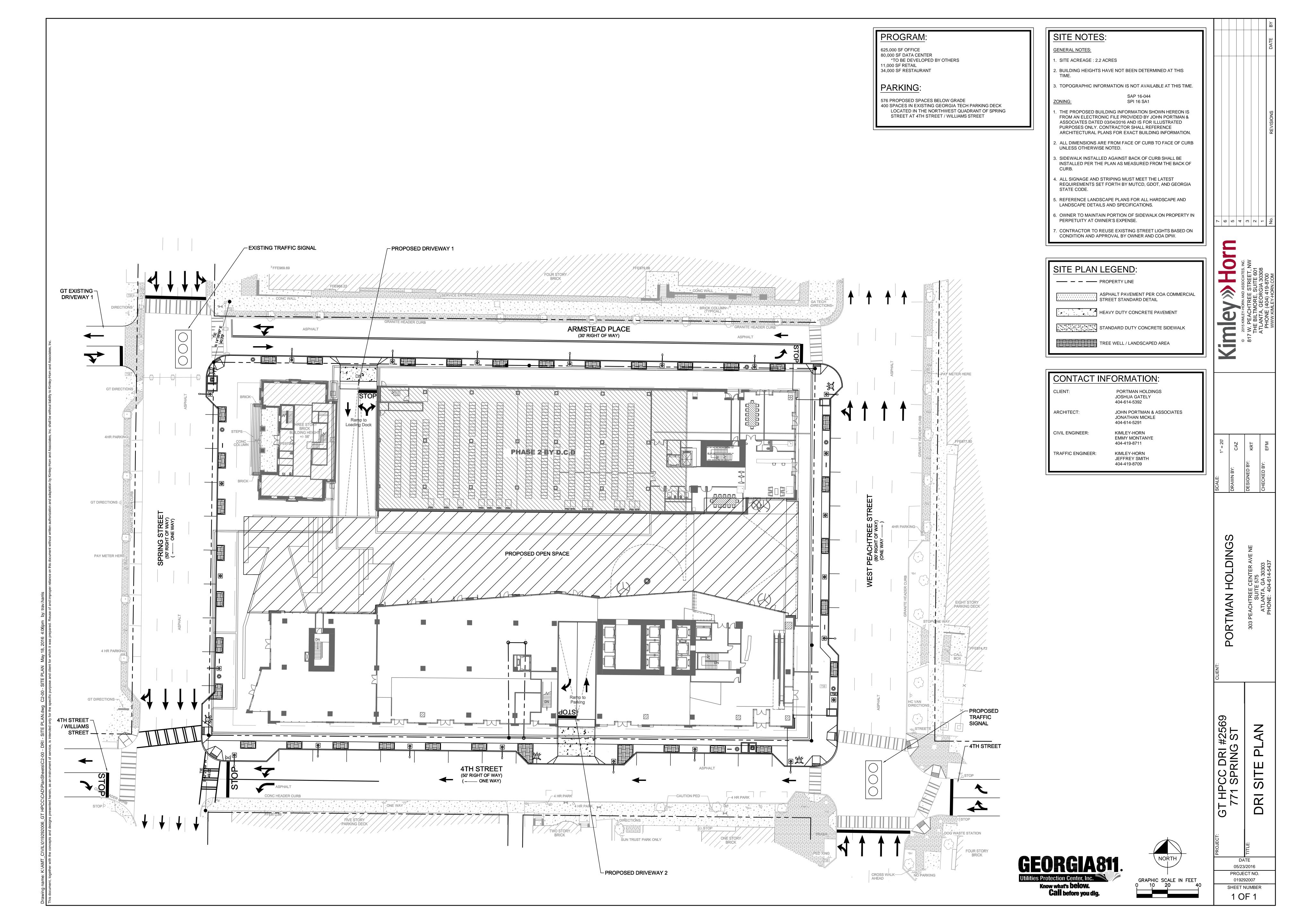
Page: 2 of 2

4th Street at Proposed Driveway 2

Photo No. 1


Comments: Proposed Driveway 2 looking east


Photo No. 2


Comments: Proposed Driveway 2 looking west

Appendix B Land Use and Zoning Maps

Appendix C Proposed Site Plan

Appendix D Trip Generation Analysis

Trip Generation Analysis (9th Ed.) Georgia Tech High Performance Computing Center City of Atlanta, Georgia

Land Use	Intensity	Alternate Independent	Daily	AN	I Peak H	lour	PM	I Peak H	our
		Variables Available	Trips	Total	In	Out	Total	In	Out
Proposed Site Traffic									
160 Data Center	80,000 s.f.		79	7	4	3	7	2	5
710 General Office Building	625,000 s.f.	employees	5,285	829	730	99	778	132	646
826 Specialty Retail Center	11.000	emproyees	508	41	25	16	48	21	27
931 Quality Restaurant	18,000 s.f.	seats	1,619	15	N/A	N/A	135	90	45
932 High-Turnover (Sit-Down) Restaurant	8,000 s.f.	seats	1,017	86	47	39	79	47	32
933 Fast-Food Restaurant without Drive-Through Window	8,000 s.f.	seats	5,728	351	211	140	209	107	102
									<u> </u>
Gross Trips			14,236	1,329	1,017	297	1,256	399	857
Office Trips			5,285	829	730	99	778	132	646
Mixed-Use Reductions			-1,194	-127	-60	-67	-13	-6	-7
Alternative Mode Reductions			-1,023	-176	-168	-8	-191	-32	-160
Adjusted Office Trips			3,068	526	502	24	574	94	479
Retail Trips			508	41	25	16	48	21	27
Mixed-Use Reductions			-217	-17	-10	-7	-22	-13	-9
Alternative Mode Reductions			-73	-6	-4	-2	-6	-2	-4
Pass By Reductions (Based on ITE Rates)			0	0	0	0	0	0	0
Adjusted Retail Trips			218	18	11	7	20	6	14
Restaurant Trips			8,364	452	258	179	423	244	179
Mixed-Use Reductions			-1,231	-118	-61	-57	-29	-13	-16
Alternative Mode Reductions			-1,783	-84	-49	-31	-99	-58	-41
Pass By Reductions (Based on ITE Rates)			0	0	0	0	0	0	0
Adjusted Restaurant Trips			5,350	250	148	91	295	173	122
Other Non-Residential Trips			79	7	4	3	7	2	5
Mixed-Use Reductions			0	0	0	0	0	0	0
Alternative Mode Reductions			-20	-2	-1	-1	-2	0	-1
Adjusted Other Non-Residential Trips			59	5	3	2	5	2	4
Mixed-Use Reductions - TOTAL			-2,642	-262	-131	-131	-64	-32	-32
Alternative Mode Reductions - TOTAL			-2,899	-268	-222	-42	-298	-92	-206
Pass-By Reductions - TOTAL			0	0	0	0	0	0	0
New Trips			8,695	799	664	124	894	275	619
Driveway Volumes			8,695	799	664	124	894	275	619

k:\amt_tpto\019292007_gt hpcc\dri phase 2\analysis\[01_analysis_gthpcc.xls]trip generation

Appendix E Intersection Volume Worksheets

Spring Street at Armstead Place/Georgia Tech Existing Driveway 1 ${\bf AM\ PEAK\ HOUR}$

		N/A			pring Stre			isting Driv	-		mstead Pla	
	<u>N</u>	orthboun		<u>s</u>	outhboun			Eastboun		2	Westboun	
Description	Left	Through	Right	Left	Through	Right	Left	Through	Right	Left	Through	Right
Observed 2016 Traffic Volumes				60	1,088	72	0	2	7	7	16	0
Pedestrians		0			74			0			10	
Conflicting Pedestrians	0		10	10		0	74		0	0		74
Heavy Vehicles				0	16	0	0	0	0	0	0	0
Heavy Vehicle %	0%	0%	0%	0%	1%	0%	0%	0%	0%	0%	0%	0%
Peak Hour Factor					0.93			0.56			0.48	
Adjusted 2016 Volumes	0	0	0	60	1088	72	0	2	7	7	16	0
Annual Growth Rate	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%
Growth Factor	1.020	1.020	1.020	1.020	1.020	1.020	1.020	1.020	1.020	1.020	1.020	1.020
2018 Background Traffic	0	0	0	61	1,110	73	0	2	7	7	16	0
Project Trips												
Trip Distribution IN				39%	22%	8%					1%	
Trip Distribution OUT								15%	1%	2%		
Office Trips	0	0	0	196	110	40	0	4	0	0	5	0
Trip Distribution IN				39%	22%	8%					1%	
Trip Distribution OUT								15%	1%	2%		
Retail Trips	0	0	0	4	2	1	0	1	0	0	0	0
Trip Distribution IN				39%	22%	8%					1%	
Trip Distribution OUT								15%	1%	2%		
Restaurant Trips	0	0	0	58	33	12	0	14	1	2	1	0
Trip Distribution IN				39%	22%	8%					1%	
Trip Distribution OUT	_			3770	22/0	070		15%	1%	2%	170	
Other Non-Residential Trips	0	0	0	1	1	0	0	0	0	0	0	0
Pass-By Trips	0	0	0	0	0	0	0	0	0	0	0	0
Total Project Trips	0	0	0	259	146	53	0	19	1	2	6	0
2018 Buildout Total	0	0	0	320	1,256	126	0	21	8	9	22	0

		N/A			pring Stre			isting Driv			rmstead Pla	
	<u>N</u>	Vorthboun	d	<u>s</u>	outhboun	d		Eastboun	<u>d</u>		Westboun	<u>d</u>
Description	Left	Through	Right	Left	Through	Right	Left	Through	Right	Left	Through	Right
Observed 2016 Traffic Volumes				39	1,161	97	0	50	27	24	28	0
Pedestrians		1			199			0			22	
Conflicting Pedestrians	0		22	22		0	199		1	1		199
Heavy Vehicles				0	18	0	0	0	0	0	0	0
Heavy Vehicle %	0%	0%	0%	0%	2%	0%	0%	0%	0%	0%	0%	0%
Peak Hour Factor					0.87			0.69			0.81	
Adjusted 2016 Volumes	0	0	0	39	1161	97	0	50	27	24	28	0
Annual Growth Rate	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%
Growth Factor	1.020	1.020	1.020	1.020	1.020	1.020	1.020	1.020	1.020	1.020	1.020	1.020
2018 Background Traffic	0	0	0	40	1,184	99	0	51	28	24	29	0
Project Trips												
Trip Distribution IN				39%	22%	8%					1%	
Trip Distribution OUT								15%	1%	2%		
Office Trips	0	0	0	37	21	8	0	72	5	10	1	0
Trip Distribution IN				39%	22%	8%					1%	
Trip Distribution OUT								15%	1%	2%		
Retail Trips	0	0	0	2	1	0	0	2	0	0	0	0
•												
Trip Distribution IN				39%	22%	8%					1%	
Trip Distribution OUT								15%	1%	2%		
Restaurant Trips	0	0	0	67	38	14	0	18	1	2	2	0
•												
Trip Distribution IN				39%	22%	8%					1%	
Trip Distribution OUT								15%	1%	2%		
Non-Residential Trips	0	0	0	1	0	0	0	1	0	0	0	0
•												
Pass-By Trips	0	0	0	0	0	0	0	0	0	0	0	0
· •												
Total Project Trips	0	0	0	107	60	22	0	93	6	12	3	0
* *												
2018 Buildout Total	0	0	0	147	1,244	121	0	144	34	36	32	0

West Peachtree Street at Armstead Place AM PEAK HOUR

		Peachtree			N/A			mstead Pl			N/A	
Description	Left L	Northboun Through		Left S	outhboun Through		Left	Eastboun Through		Left	Westboun Through	
Description	Len	Tillough	Kigiit	Leit	Tillough	Kigiit	Len	Through	Kigiii	Leit	Tillough	Kigiii
Observed 2016 Traffic Volumes	24	1,273	0				54	0	0			
Pedestrians		0	•		2			53			0	
Conflicting Pedestrians	53		0	0		53	2		0	0		2
Heavy Vehicles	0	27	0				0	0	0			
Heavy Vehicle %	0%	2%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
Peak Hour Factor		0.96						0.68				
Adjusted 2016 Volumes	24	1273	0	0	0	0	54	0	0	0	0	0
Annual Growth Rate	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%
Growth Factor	1.020	1.020	1.020	1.020	1.020	1.020	1.020	1.020	1.020	1.020	1.020	1.020
2018 Background Traffic	24	1,299	0	0	0	0	55	0	0	0	0	0
Project Trips												
Trip Distribution IN	3%											
Trip Distribution OUT		2%					49%					
Office Trips	15	0	0	0	0	0	12	0	0	0	0	0
Trip Distribution IN	3%											
Trip Distribution OUT		2%					49%					
Retail Trips	0	0	0	0	0	0	3	0	0	0	0	0
Trip Distribution IN	3%											
Trip Distribution OUT		2%					49%					
Restaurant Trips	4	2	0	0	0	0	45	0	0	0	0	0
Trip Distribution IN	3%											
Trip Distribution OUT		2%					49%					
Other Non-Residential Trips	0	0	0	0	0	0	1	0	0	0	0	0
Pass-By Trips	0	0	0	0	0	0	0	0	0	0	0	0
Total Project Trips	19	2	0	0	0	0	61	0	0	0	0	0
2018 Buildout Total	43	1,301	0	0	0	0	116	0	0	0	0	0

	West	Peachtree	Street		N/A		Aı	mstead Pl	ace		N/A	
	N	orthboun	ıd	<u>s</u>	outhboun	<u>ıd</u>		Eastboun	d		Westboun	<u>d</u>
Description	Left	Through	Right	Left	Through	Right	Left	Through	Right	Left	Through	Right
Observed 2016 Traffic Volumes	52	1,376	0				91	0	0			
Pedestrians		1						75				
Conflicting Pedestrians	75		0	0		75	0		1	1		0
Heavy Vehicles	0	23	0				0	0	0			
Heavy Vehicle %	0%	2%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
Peak Hour Factor		0.90						0.88				
Adjusted 2016 Volumes	52	1376	0	0	0	0	91	0	0	0	0	0
Annual Growth Rate	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%
Growth Factor	1.020	1.020	1.020	1.020	1.020	1.020	1.020	1.020	1.020	1.020	1.020	1.020
2018 Background Traffic	53	1,404	0	0	0	0	93	0	0	0	0	0
Project Trips												
Trip Distribution IN	3%											
Trip Distribution OUT		2%					49%					
Office Trips	3	10	0	0	0	0	235	0	0	0	0	0
Trip Distribution IN	3%											
Trip Distribution OUT		2%					49%					
Retail Trips	0	0	0	0	0	0	7	0	0	0	0	0
Trip Distribution IN	3%											
Trip Distribution OUT	370	2%					49%					
Restaurant Trips	5	2	0	0	0	0	60	0	0	0	0	0
Î												
Trip Distribution IN	3%											
Trip Distribution OUT		2%					49%					
Non-Residential Trips	0	0	0	0	0	0	2	0	0	0	0	0
Pass-By Trips	0	0	0	0	0	0	0	0	0	0	0	0
Total Project Trips	8	12	0	0	0	0	304	0	0	0	0	0
2018 Buildout Total	61	1,416	0	0	0	0	397	0	0	0	0	0

West Peachtree Street at 4th Street AM PEAK HOUR

		Peachtree			N/A			N/A			4th Street	
	_	orthboun		_	outhboun		-	Eastboun	_	-	Westboun	
Description	Left	Through	Right	Left	Through	Right	Left	Through	Right	Left	Through	Right
Observed 2016 Traffic Volumes	134	1,427	0							0	82	73
Pedestrians		11			11			52			59	
Conflicting Pedestrians	52		59	59		52	11		11	11		11
Heavy Vehicles	0	30	0							0	1	0
Heavy Vehicle %	0%	2%	0%	0%	0%	0%	0%	0%	0%	0%	1%	0%
Peak Hour Factor		0.96									0.81	
Adjusted 2016 Volumes	134	1427	0	0	0	0	0	0	0	0	82	73
Annual Growth Rate	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%
Growth Factor	1.020	1.020	1.020	1.020	1.020	1.020	1.020	1.020	1.020	1.020	1.020	1.020
2018 Background Traffic	137	1,456	0	0	0	0	0	0	0	0	84	74
Project Trips												
Trip Distribution IN	22%	2%									6%	1%
Trip Distribution OUT		2%										
Office Trips	110	10	0	0	0	0	0	0	0	0	30	5
Trip Distribution IN	22%	2%									6%	1%
Trip Distribution OUT		2%										
Retail Trips	2	0	0	0	0	0	0	0	0	0	1	0
Trip Distribution IN	22%	2%									6%	1%
Trip Distribution OUT		2%										
Restaurant Trips	33	5	0	0	0	0	0	0	0	0	9	1
•												
Trip Distribution IN	22%	2%									6%	1%
Trip Distribution OUT		2%										
Other Non-Residential Trips	1	0	0	0	0	0	0	0	0	0	0	0
Pass-By Trips	0	0	0	0	0	0	0	0	0	0	0	0
Total Project Trips	146	15	0	0	0	0	0	0	0	0	40	6
2018 Buildout Total	283	1,471	0	0	0	0	0	0	0	0	124	80

	West	Peachtree	Street		N/A			N/A			4th Street	
	1	Northboun	d	S	outhboun	d]	Eastboun	1	3	Westboun	<u>d</u>
Description	Left	Through	Right	Left	Through	Right	Left	Through	Right	Left	Through	Right
Observed 2016 Traffic Volumes	68	1,167	0							0	109	208
Pedestrians		25			14			69			82	
Conflicting Pedestrians	69		82	82		69	14		25	25		14
Heavy Vehicles	0	23	0							0	0	0
Heavy Vehicle %	0%	2%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
Peak Hour Factor		0.88									0.84	
Adjusted 2016 Volumes	68	1167	0	0	0	0	0	0	0	0	109	208
Annual Growth Rate	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%
Growth Factor	1.020	1.020	1.020	1.020	1.020	1.020	1.020	1.020	1.020	1.020	1.020	1.020
2018 Background Traffic	69	1,190	0	0	0	0	0	0	0	0	111	212
Project Trips												
Trip Distribution IN	22%	2%									6%	1%
Trip Distribution OUT		2%										
Office Trips	21	12	0	0	0	0	0	0	0	0	6	1
Trip Distribution IN	22%	2%									6%	1%
Trip Distribution OUT		2%										
Retail Trips	1	0	0	0	0	0	0	0	0	0	0	0
Trip Distribution IN	22%	2%									6%	1%
Trip Distribution OUT		2%										
Restaurant Trips	38	5	0	0	0	0	0	0	0	0	10	2
Trip Distribution IN	22%	2%									6%	1%
Trip Distribution OUT		2%										
Non-Residential Trips	0	0	0	0	0	0	0	0	0	0	0	0
Pass-By Trips	0	0	0	0	0	0	0	0	0	0	0	0
Total Project Trips	60	17	0	0	0	0	0	0	0	0	16	3
2018 Buildout Total	129	1,207	0	0	0	0	0	0	0	0	127	215

Spring Street at 4th Street/Williams Street AM PEAK HOUR

					pring Stre			illiams Str			4th Street	
	<u>N</u>	orthboun		<u>s</u>	outhboun]	Eastbound	_	2	Westboun	
Description	Left	Through	Right	Left	Through	Right	Left	Through	Right	Left	Through	Right
Observed 2016 Traffic Volumes				0	1,025	70	0	0	43	97	107	0
Pedestrians		7			15			14			16	
Conflicting Pedestrians	14		16	16		14	15		7	7		15
Heavy Vehicles				0	15	0	0	0	0	1	0	0
Heavy Vehicle %	0%	0%	0%	0%	1%	0%	0%	0%	0%	1%	0%	0%
Peak Hour Factor					0.94			0.72			0.86	
Adjusted 2016 Volumes	0	0	0	0	1025	70	0	0	43	97	107	0
Annual Growth Rate	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%
Growth Factor	1.020	1.020	1.020	1.020	1.020	1.020	1.020	1.020	1.020	1.020	1.020	1.020
2018 Background Traffic	0	0	0	0	1,046	71	0	0	44	99	109	0
Project Trips	-											
Trip Distribution IN					2%	20%					11%	
Trip Distribution OUT					3%	2070			11%	17%	5%	
Office Trips	0	0	0	0	11	100	0	0	3	4	56	0
Trip Distribution IN					2%	20%					11%	
Trip Distribution OUT					3%				11%	17%	5%	
Retail Trips	0	0	0	0	0	2	0	0	1	1	1	0
Trip Distribution IN					2%	20%					11%	
Trip Distribution OUT					3%	2070			11%	17%	5%	
Restaurant Trips	0	0	0	0	6	30	0	0	10	15	21	0
Trip Distribution IN	-				2%	20%					11%	
Trip Distribution IN Trip Distribution OUT					3%	20%			11%	17%	5%	
Other Non-Residential Trips	0	0	0	0	0	1	0	0	0	0	0	0
Onici Non-Residentiai Trips	1	U	U	U	U	1	U	U	U	U	U	U
Pass-By Trips	0	0	0	0	0	0	0	0	0	0	0	0
Total Project Trips	0	0	0	0	17	133	0	0	14	20	78	0
2018 Buildout Total	0	0	0	0	1,063	204	0	0	58	119	187	0

		orthbour			pring Stre			illiams Str Eastboun		١,	4th Street Westboun	
Description	Left	Through		Left -	Through		Left	Through	_	Left	Through	_
Description	Leit	Imougn	Right	Leit	Tillough	Right	Leit	Tinough	Right	Leit	Tinough	Kigik
Observed 2016 Traffic Volumes				0	1,229	43	0	0	156	136	48	0
Pedestrians		7			26			22			32	
Conflicting Pedestrians	22		32	32		22	26		7	7		26
Heavy Vehicles				0	21	0	0	0	0	0	0	0
Heavy Vehicle %	0%	0%	0%	0%	2%	0%	0%	0%	0%	0%	0%	0%
Peak Hour Factor		•	•		0.84			0.80			0.72	
Adjusted 2016 Volumes	0	0	0	0	1229	43	0	0	156	136	48	0
Annual Growth Rate	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%
Growth Factor	1.020	1.020	1.020	1.020	1.020	1.020	1.020	1.020	1.020	1.020	1.020	1.020
2018 Background Traffic	0	0	0	0	1,254	44	0	0	159	139	49	0
Project Trips	+											
Trip Distribution IN					2%	20%					11%	
Trip Distribution OUT					3%				11%	17%	5%	
Office Trips	0	0	0	0	16	19	0	0	53	81	34	0
Trip Distribution IN					2%	20%					11%	
Trip Distribution OUT					3%				11%	17%	5%	
Retail Trips	0	0	0	0	0	1	0	0	2	2	2	0
Trip Distribution IN	-				2%	20%					11%	
Trip Distribution OUT					3%				11%	17%	5%	
Restaurant Trips	0	0	0	0	7	35	0	0	13	21	25	0
Trip Distribution IN					2%	20%					11%	
Trip Distribution OUT					3%				11%	17%	5%	
Non-Residential Trips	0	0	0	0	0	0	0	0	0	1	0	0
Pass-By Trips	0	0	0	0	0	0	0	0	0	0	0	0
Total Project Trips	0	0	0	0	23	55	0	0	68	105	61	0
2018 Buildout Total	0	0	0	0	1,277	99	0	0	227	244	110	0

Williams Street at Georgia Tech Existing Driveway 2 AM PEAK HOUR

Northbound Southbound Eastbound Westbound Description Left Through Right Left Through Right Left Through Right Right Through Observed 2016 Traffic Volumes Pedestrians Conflicting Pedestrians 0 0 Heavy Vehicles 0 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% Heavy Vehicle % 0% 0% Peak Hour Factor Adjusted 2016 Volumes 0 0 0 78 0 68 0 Annual Growth Rate 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% Growth Factor 1.020 1.020 1.020 1.020 1.020 1.020 1.020 1.020 1.020 1.020 1.020 1.020 2018 Background Traffic 0 0 0 0 0 80 0 0 69 0 Project Trips Trip Distribution IN 3% 28% Trip Distribution OUT 11% 2% 0 141 0 0 0 3 0 0 0 0 0 16 Office Trips Trip Distribution IN 28% Trip Distribution OUT 11% Retail Trips 0 0 0 1 0 0 0 0 0 0 3 Trip Distribution IN 3% 28% Trip Distribution OUT 9 41 0 0 2 0 0 0 0 0 0 Restaurant Trips 10 3% 28% Trip Distribution IN Trip Distribution OUT 11% 2% 0 0 0 0 0 0 0 Other Non-Residential Trips 0 0 0 Pass-By Trips 0 0 0 0 0 0 0 0 0 0 0 Total Project Trips 0 0 0 14 0 0 0 0 0 25 186 2018 Buildout Total

		N/A		GT Ex	isting Driv	eway 2	W	illiams Str	eet	W	illiams Str	eet
	N	Vorthboun	d	<u>s</u>	outhboun	d]	Eastboun	1	3	Vestboun	<u>d</u>
Description	Left	Through	Right	Left	Through	Right	Left	Through	Right	Left	Through	Right
Observed 2016 Traffic Volumes				124	0	115	0	83	0	0	76	0
Pedestrians		5			4			6			0	
Conflicting Pedestrians	6		0	0		6	4		5	5		4
Heavy Vehicles				0	0	0	0	0	0	0	0	0
Heavy Vehicle %	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
Peak Hour Factor					0.88			0.74			0.79	
Adjusted 2016 Volumes	0	0	0	124	0	115	0	83	0	0	76	0
Annual Growth Rate	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%
Growth Factor	1.020	1.020	1.020	1.020	1.020	1.020	1.020	1.020	1.020	1.020	1.020	1.020
2018 Background Traffic	0	0	0	126	0	117	0	85	0	0	78	0
Project Trips												
Trip Distribution IN											3%	28%
Trip Distribution OUT				11%		2%					5%	
Office Trips	0	0	0	53	0	10	0	0	0	0	27	26
Trip Distribution IN											3%	28%
Trip Distribution OUT				11%		2%					5%	
Retail Trips	0	0	0	2	0	0	0	0	0	0	1	2
Trip Distribution IN											3%	28%
Trip Distribution OUT				11%		2%					5%	
Restaurant Trips	0	0	0	13	0	2	0	0	0	0	- 11	48
Trip Distribution IN											3%	28%
Trip Distribution OUT				11%		2%					5%	
Non-Residential Trips	0	0	0	0	0	0	0	0	0	0	0	0
Pass-By Trips	0	0	0	0	0	0	0	0	0	0	0	0
Total Project Trips	0	0	0	68	0	12	0	0	0	0	39	76
2018 Buildout Total	0	0	0	194	0	129	0	85	0	0	117	76

Williams Street at Georgia Tech Existing Driveway 3 ${\bf AM\ PEAK\ HOUR}$

	W	illiams Str	eet	W	illiams Str	eet		N/A		GT Ex	isting Driv	eway 3
	N	Vorthboun	<u>ıd</u>	S	outhboun	<u>d</u>]	Eastboun	1	1	Westboun	<u>d</u>
Description	Left	Through	Right	Left	Through	Right	Left	Through	Right	Left	Through	Right
Observed 2016 Traffic Volumes	0	73	0	16	72	0				1	0	13
Pedestrians		0			0			0			3	
Conflicting Pedestrians	0		3	3		0	0		0	0		0
Heavy Vehicles	0	0	0	0	0	0				0	0	0
Heavy Vehicle %	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
Peak Hour Factor		0.91			0.82						0.70	
Adjusted 2016 Volumes	0	73	0	16	72	0	0	0	0	1	0	13
Annual Growth Rate	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%
Growth Factor	1.020	1.020	1.020	1.020	1.020	1.020	1.020	1.020	1.020	1.020	1.020	1.020
2018 Background Traffic	0	74	0	16	73	0	0	0	0	1	0	13
Project Trips												
Trip Distribution IN			3%	2%								
Trip Distribution OUT		7%										13%
Office Trips	0	2	15	10	0	0	0	0	0	0	0	3
Trip Distribution IN			3%	2%								
Trip Distribution OUT		7%										13%
Retail Trips	0	0	0	0	0	0	0	0	0	0	0	1
Trip Distribution IN			3%	2%								
Trip Distribution OUT		7%										13%
Restaurant Trips	0	6	4	3	0	0	0	0	0	0	0	12
Trip Distribution IN			3%	2%								
Trip Distribution OUT		7%										13%
Other Non-Residential Trips	0	0	0	0	0	0	0	0	0	0	0	0
Pass-By Trips	0	0	0	0	0	0	0	0	0	0	0	0
Total Project Trips	0	8	19	13	0	0	0	0	0	0	0	16
2018 Buildout Total	0	82	19	29	73	0	0	0	0	1	0	29

		illiams Str			illiams Str			N/A			isting Driv	
	_	orthbour		_	outhboun			Eastboun	_		Westboun	
Description	Left	Through	Right	Left	Through	Right	Left	Through	Right	Left	Through	Right
Observed 2016 Traffic Volumes	0	153	5	12	72	0				6	0	5
Pedestrians		0			0			0			10	
Conflicting Pedestrians	0		10	10		0	0		0	0		0
Heavy Vehicles	0	0	0	0	0	0				0	0	0
Heavy Vehicle %	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
Peak Hour Factor		0.88			0.84						0.55	
Adjusted 2016 Volumes	0	153	5	12	72	0	0	0	0	6	0	5
Annual Growth Rate	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%
Growth Factor	1.020	1.020	1.020	1.020	1.020	1.020	1.020	1.020	1.020	1.020	1.020	1.020
2018 Background Traffic	0	156	5	12	73	0	0	0	0	6	0	5
Project Trips	-											
Trip Distribution IN			3%	2%								
Trip Distribution OUT		7%										13%
Office Trips	0	34	3	2	0	0	0	0	0	0	0	62
Trip Distribution IN	-		3%	2%								
Trip Distribution OUT		7%	570	270								13%
Retail Trips	0	1	0	0	0	0	0	0	0	0	0	2
This Division IN			3%	2%								
Trip Distribution IN	_	7%	3%	2%								120/
Trip Distribution OUT Restaurant Trips	0	9	5	3	0	0	0	0	0	0	0	13% 16
Restaurant Trips	0	,	3	3	0	0	0	0	0	U	U	10
Trip Distribution IN			3%	2%								
Trip Distribution OUT		7%										13%
Non-Residential Trips	0	0	0	0	0	0	0	0	0	0	0	1
Pass-By Trips	0	0	0	0	0	0	0	0	0	0	0	0
Total Project Trips	0	44	8	5	0	0	0	0	0	0	0	81
Total Project Trips	0	44	δ	3	U	U	U	U	U	U	U	81
2018 Buildout Total	0	200	13	17	73	0	0	0	0	6	0	86

Williams Street at 5th Street AM PEAK HOUR

	W	illiams Str	eet		N/A			5th Street		5th Street		
	N	orthboun	<u>d</u>	S	outhboun	<u>d</u>]	Eastboun	1	Westbound		
Description	Left	Through	Right	Left	Through	Right	Left	Through	Right	Left	Through	Right
Observed 2016 Traffic Volumes	50	33	9				83	133	72	11	190	87
Pedestrians		131			134			9			30	
Conflicting Pedestrians	9		30	30		9	134		131	131		134
Heavy Vehicles	0	0	0				0	1	0	0	0	1
Heavy Vehicle %	0%	0%	0%	0%	0%	0%	0%	1%	0%	0%	0%	1%
Peak Hour Factor		0.85						0.77			0.90	
Adjusted 2016 Volumes	50	33	9	0	0	0	83	133	72	11	190	87
Annual Growth Rate	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%
Growth Factor	1.020	1.020	1.020	1.020	1.020	1.020	1.020	1.020	1.020	1.020	1.020	1.020
2018 Background Traffic	51	34	9	0	0	0	85	136	73	11	194	89
Project Trips												
Trip Distribution IN								1%	2%			
Trip Distribution OUT	2%	8%	10%								1%	
Office Trips	0	2	2	0	0	0	0	5	10	0	0	0
Trip Distribution IN								1%	2%			
Trip Distribution OUT	2%	8%	10%								1%	
Retail Trips	0	1	1	0	0	0	0	0	0	0	0	0
Trip Distribution IN	+							1%	2%			
Trip Distribution OUT	2%	8%	10%								1%	
Restaurant Trips	2	7	9	0	0	0	0	1	3	0	1	0
Trip Distribution IN								1%	2%			
Trip Distribution OUT	2%	8%	10%								1%	
Other Non-Residential Trips	0	0	0	0	0	0	0	0	0	0	0	0
Pass-By Trips	0	0	0	0	0	0	0	0	0	0	0	0
Total Project Trips	2	10	12	0	0	0	0	6	13	0	1	0
	<u> </u>	10		Ŭ	Ŭ		Ŭ	Ľ		Ľ		
2018 Buildout Total	53	44	21	0	0	0	85	142	86	11	195	89

	W	illiams Str	eet		N/A		5th Street			5th Street		
	<u>N</u>	orthboun		<u>s</u>	outhboun	ıd]	Eastboun	<u>d</u>	1	Westboun	
Description	Left	Through	Right	Left	Through	Right	Left	Through	Right	Left	Through	Right
Observed 2016 Traffic Volumes	72	65	15				196	242	78	- 11	387	136
Pedestrians		409			396			38			90	
Conflicting Pedestrians	38		90	90		38	396		409	409		396
Heavy Vehicles	0	0	0				0	0	0	0	0	4
Heavy Vehicle %	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	3%
Peak Hour Factor		0.88						0.96			0.91	
Adjusted 2016 Volumes	72	65	15	0	0	0	196	242	78	11	387	136
Annual Growth Rate	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%
Growth Factor	1.020	1.020	1.020	1.020	1.020	1.020	1.020	1.020	1.020	1.020	1.020	1.020
2018 Background Traffic	73	66	15	0	0	0	200	247	80	11	395	139
Project Trips												
Trip Distribution IN								1%	2%			
Trip Distribution OUT	2%	8%	10%								1%	
Office Trips	10	38	48	0	0	0	0	1	2	0	5	0
Trip Distribution IN								1%	2%			
Trip Distribution OUT	2%	8%	10%								1%	
Retail Trips	0	1	1	0	0	0	0	0	0	0	0	0
Trip Distribution IN								1%	2%			
Trip Distribution OUT	2%	8%	10%					-77	-,-		1%	
Restaurant Trips	2	10	12	0	0	0	0	2	3	0	1	0
Trip Distribution IN								1%	2%			
Trip Distribution OUT	2%	8%	10%					170	2,0		1%	
Non-Residential Trips	0	0	0	0	0	0	0	0	0	0	0	0
Pass-By Trips	0	0	0	0	0	0	0	0	0	0	0	0
Total Project Trips	12	49	61	0	0	0	0	3	5	0	6	0
•												
2018 Buildout Total	85	115	76	0	0	0	200	250	85	- 11	401	139

Armstead Place at Proposed Driveway 1 AM PEAK HOUR

	Propo	Proposed Driveway 1						Armstead Place			Armstead Place		
	<u>N</u>	orthboun		<u>s</u>	outhboun	<u>d</u>]	Eastboun	<u>1</u>	1	Westboun		
Description	Left	Through	Right	Left	Through	Right	Left	Through	Right	Left	Through	Right	
Observed 2016 Traffic Volumes	0	0	0				0	54	0	0	23	0	
Pedestrians		0					0		0				
Conflicting Pedestrians	0		0	0		0	0		0	0		0	
Heavy Vehicles	0	0	0				0	0	0	0	0	0	
Heavy Vehicle %	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	
Peak Hour Factor		0.92						0.68			0.48		
Adjusted 2016 Volumes	0	0	0	0	0	0	0	54	0	0	23	0	
Annual Growth Rate	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	
Growth Factor	1.020	1.020	1.020	1.020	1.020	1.020	1.020	1.020	1.020	1.020	1.020	1.020	
2018 Background Traffic	0	0	0	0	0	0	0	55	0	0	23	0	
Project Trips													
Trip Distribution IN									39%	2%	1%		
Trip Distribution OUT	2%		34%					15%					
Office Trips	0	0	8	0	0	0	0	4	196	10	5	0	
Trip Distribution IN									39%	2%	1%		
Trip Distribution OUT	2%		34%					15%					
Retail Trips	0	0	2	0	0	0	0	1	4	0	0	0	
Trip Distribution IN									39%	2%	1%		
Trip Distribution OUT	2%		34%					15%	3770	270	170		
Restaurant Trips	2	0	31	0	0	0	0	14	58	3	1	0	
restaurant Tips	Ť								50		-	Ü	
Trip Distribution IN									39%	2%	1%		
Trip Distribution OUT	2%		34%					15%					
Other Non-Residential Trips	0	0	1	0	0	0	0	0	1	0	0	0	
Pass-By Trips	0	0	0	0	0	0	0	0	0	0	0	0	
Total Project Trips	2	0	42	0	0	0	0	19	259	13	6	0	
2018 Buildout Total	2	0	42	0	0	0	0	74	259	13	29	0	

		sed Drive						mstead Pla		Armstead Place		
		orthboun	_	_	outhboun	_		Eastbound	_	-	Westboun	_
Description	Left	Through	Right	Left	Through	Right	Left	Through	Right	Left	Through	Right
Observed 2016 Traffic Volumes	0	0	0				0	91	0	0	52	0
Pedestrians		0						0			0	
Conflicting Pedestrians	0		0	0		0	0		0	0		0
Heavy Vehicles	0	0	0				0	0	0	0	0	0
Heavy Vehicle %	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
Peak Hour Factor		0.92						0.88			0.81	
Adjusted 2016 Volumes	0	0	0	0	0	0	0	91	0	0	52	0
Annual Growth Rate	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%
Growth Factor	1.020	1.020	1.020	1.020	1.020	1.020	1.020	1.020	1.020	1.020	1.020	1.020
2018 Background Traffic	0	0	0	0	0	0	0	93	0	0	53	0
Project Trips												
Trip Distribution IN									39%	2%	1%	
Trip Distribution OUT	2%		34%					15%				
Office Trips	10	0	163	0	0	0	0	72	37	2	1	0
Trip Distribution IN									39%	2%	1%	
Trip Distribution OUT	2%		34%					15%				
Retail Trips	0	0	5	0	0	0	0	2	2	0	0	0
Trip Distribution IN									39%	2%	1%	
Trip Distribution OUT	2%		34%					15%				
Restaurant Trips	2	0	41	0	0	0	0	18	67	3	2	0
Trip Distribution IN									39%	2%	1%	
Trip Distribution OUT	2%		34%					15%				
Non-Residential Trips	0	0	1	0	0	0	0	1	1	0	0	0
Pass-By Trips	0	0	0	0	0	0	0	0	0	0	0	0
Total Project Trips	12	0	210	0	0	0	0	93	107	5	3	0
2018 Buildout Total	12	0	210	0	0	0	0	186	107	5	56	0

4th Street at Proposed Driveway 2 AM PEAK HOUR

				Propo	sed Drive	way 2		N/A			4th Street	
	N	orthboun	d	S	outhboun	<u>d</u>	1	Eastbound	<u>1</u>	Westbound		
Description	Left	Through	Right	Left	Through	Right	Left	Through	Right	Left	Through	Right
Observed 2016 Traffic Volumes				0	0	0				0	204	0
Pedestrians					0						0	
Conflicting Pedestrians	0		0	0		0	0		0	0		0
Heavy Vehicles				0	0	0				0	0	0
Heavy Vehicle %	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
Peak Hour Factor					0.92						0.86	
Adjusted 2016 Volumes	0	0	0	0	0	0	0	0	0	0	204	0
Annual Growth Rate	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%
Growth Factor	1.020	1.020	1.020	1.020	1.020	1.020	1.020	1.020	1.020	1.020	1.020	1.020
2018 Background Traffic	0	0	0	0	0	0	0	0	0	0	208	0
Project Trips												
Trip Distribution IN											11%	17%
Trip Distribution OUT						22%						
Office Trips	0	0	0	0	0	5	0	0	0	0	55	85
Trip Distribution IN											11%	17%
Trip Distribution OUT						22%						
Retail Trips	0	0	0	0	0	2	0	0	0	0	1	2
Trip Distribution IN											11%	17%
Trip Distribution OUT						22%						
Restaurant Trips	0	0	0	0	0	20	0	0	0	0	16	25
Trip Distribution IN											11%	17%
Trip Distribution OUT						22%						
Other Non-Residential Trips	0	0	0	0	0	1	0	0	0	0	0	0
Pass-By Trips	0	0	0	0	0	0	0	0	0	0	0	0
Total Project Trips	0	0	0	0	0	28	0	0	0	0	72	112
2018 Buildout Total	0	0	0	0	0	28	0	0	0	0	280	112

				Propo	osed Drive	way 2		N/A		4th Street			
	N	orthboun	<u>ıd</u>	<u>s</u>	outhboun	d		Eastbound	1	1	Westboun	<u>d</u>	
Description	Left	Through	Right	Left	Through	Right	Left	Through	Right	Left	Through	Right	
Observed 2016 Traffic Volumes				0	0	0				0	184	0	
Pedestrians					0						0		
Conflicting Pedestrians	0		0	0		0	0		0	0		0	
Heavy Vehicles				0	0	0				0	0	0	
Heavy Vehicle %	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	
Peak Hour Factor					0.92						0.72		
Adjusted 2016 Volumes	0	0	0	0	0	0	0	0	0	0	184	0	
Annual Growth Rate	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	1.0%	
Growth Factor	1.020	1.020	1.020	1.020	1.020	1.020	1.020	1.020	1.020	1.020	1.020	1.020	
2018 Background Traffic	0	0	0	0	0	0	0	0	0	0	188	0	
Project Trips													
Trip Distribution IN											11%	17%	
Trip Distribution OUT						22%							
Office Trips	0	0	0	0	0	105	0	0	0	0	10	16	
Trip Distribution IN											11%	17%	
Trip Distribution OUT						22%							
Retail Trips	0	0	0	0	0	3	0	0	0	0	1	1	
Trip Distribution IN											11%	17%	
Trip Distribution OUT						22%							
Restaurant Trips	0	0	0	0	0	27	0	0	0	0	19	29	
Trip Distribution IN											11%	17%	
Trip Distribution OUT						22%							
Non-Residential Trips	0	0	0	0	0	1	0	0	0	0	0	0	
Pass-By Trips	0	0	0	0	0	0	0	0	0	0	0	0	
Total Project Trips	0	0	0	0	0	136	0	0	0	0	30	46	
2018 Buildout Total	0	0	0	0	0	136	0	0	0	0	218	46	

Appendix F Programmed Project Fact Sheets

AT-271

Atlanta Region's Plan RTP (2016) PROJECT FACT SHEET

Short Title	FROM PONCE DE LEON AVENUE TO 14TH STREET	9 S 14th St NE	Pai
		(251A) & & & & & & & & & & & & & & & & & & &	
GDOT Project No.	0012587	MIDTOV	VN
Federal ID No.	N/A	250 \$ 1274	
Status	Programmed	Z	St NE
Service Type	Last Mile Connectivity / Complete Street Retrofit	249D 8	STIVE
Sponsor	City of Atlanta, Midtown Alliance	g gr	ponc
Jurisdiction	City of Atlanta	o 201	0 NAVTEQ © AND © Microsoft Corporation
Analysis Level	In the Region's Air Quality Conformity Analysis	403	wicroson Corporation
Existing Thru Lane	4	Network Year	2020
Planned Thru Lane	2	Corridor Length	1.0 miles
	1 = .141 .1		

Detailed Description and Justification

Reduction of travel lanes and construction of buffered southbound bike lane, sidewalk and streetscape improvements, landscaping, crosswalks, and on-street parking where possible.

Phas	se Status & Funding	Status	FISCAL	TOTAL PHASE	BREAKDOWN OF TOTAL PHASE COST BY FUNDING SOURCE							
Info	rmation		YEAR	COST	FEDERAL	STATE	BONDS	LOCAL/PRIVATE				
PE	Local Jurisdiction/Municipality Funds	AUTH	2014	\$450,000	\$0,000	\$0,000	\$0,000	\$450,000				
CST	STP - Urban (>200K) (ARC)	AUTH	2015	\$5,171,535	\$3,347,200	\$0,000	\$0,000	\$1,824,335				
				\$5,621,535	\$3,347,200	\$0,000	\$0,000	\$2,274,335				

SCP: Scoping PE: Preliminary engineering / engineering / design / planning PE-OV: GDOT oversight services for engineering ROW: Right-of-way Acquistion UTL: Utility relocation CST: Construction / Implementation ALL: Total estimated cost, inclusive of all phases

A:C

AT-277

Atlanta Region's Plan RTP (2016) PROJECT FACT SHEET

Short Title	CYCLE ATLANTA: PHASE 1.0 - BICYCLE MOBILITY IMPROVEMENTS	75 BROOK V	
GDOT Project No.	0012593		Druic
Federal ID No.	N/A		
Status	Programmed		AT-277
Service Type	Last Mile Connectivity / Bicycle Facility	ew Atlar	Na
Sponsor	City of Atlanta	ery	EAST ATLAI
Jurisdiction	City of Atlanta		2010 NAVTEQ © AND ©
Analysis Level	Exempt from Air Quality Analysis (40 CFR 93)		15 Microsoft Corporation
Existing Thru Lane	N/A	Network Year	TBD
Planned Thru Lane	N/A	Corridor Length	26.8 miles

Detailed Description and Justification

This project involves installing the bicycle facilities identified by the ARC-funded Cycle Atlanta: Phase 1.0 study. These facilities will support the existing and planned compact development in the central core of the city, as well as within the Atlanta BeltLine Planning Area, by supporting cycling as a mode of transportation between varied land uses. The five Core Bicycle Connection corridors from the Connect Atlanta Plan that will be analyzed under Phase 1.0 connect directly to 13 of the 38 MARTA heavy rail stations, providing enhanced connections between housing, services, employment opportunities and transit stations. The results of the study will identify methods to retrofit existing urban roadways with bicycle facilities in a context sensitive manner that protects the character and integrity of existing neighborhoods while meeting the needs of the community. Many of these study corridors overlap the ARC Bicycle Study Network, including West Marietta Street, Howell Mill Road, Peachtree Street, Lee Street and Martin Luther King, Jr Drive. Examples of the types of projects to be implemented can be found in the NACTO Urban Bikeway Design Guide. The study will be completed and adopted by June 30, 2013. Project components are identified as Core Bicycle Connections and Secondary Bicycle Connections in the Connect Atlanta Plan. Portions of this project are located in defined Equitable Target Areas. The project is being funded under the Last Mile Connectivity Program, a regional program defined in PLAN 2040 to improve pedestrian and bicyclist mobility, accessibility and safety along transit corridors, within employment and commercial centers, and in the vicinity of other major origins and destinations such as schools.

Phas	se Status & Funding	Status	FISCAL	TOTAL PHASE	BREAKDOWN	BREAKDOWN OF TOTAL PHASE COST BY FUNDING SOUR						
Info	rmation		YEAR	COST	FEDERAL	BONDS	LOCAL/PRIVATE					
PE	STP - Urban (>200K) (ARC)	AUTH	2014	\$450,000	\$360,000	\$0,000	\$0,000	\$90,000				
ROW	STP - Urban (>200K) (ARC)	AUTH	2015	\$50,000	\$40,000	\$0,000	\$0,000	\$10,000				
CST	STP - Urban (>200K) (ARC)	AUTH	2015	\$2,000,000	\$1,600,000	\$0,000	\$0,000	\$400,000				
				\$2,500,000	\$2,000,000	\$0,000	\$0,000	\$500,000				

SCP: Scoping PE: Preliminary engineering / engineering / design / planning PE-OV: GDOT oversight services for engineering ROW: Right-of-way Acquistion UTL: Utility relocation CST: Construction / Implementation ALL: Total estimated cost, inclusive of all phases

AR-490C

Atlanta Region's Plan RTP (2016) PROJECT FACT SHEET

ATLANTA STREETCAR - MIDTOWN / CROSSTOWN **Short Title** CORRIDOR FROM BELTLINE EAST CORRIDOR TO BELTLINE WEST CORRIDOR HOME PARK AR-490C **GDOT Project No.** TBD BANKHEAD N/A Federal ID No. **Status** Long Range 19 Transit / Rail Capital **Service Type** City of Atlanta UST US **Sponsor** Atlanta Regional - Central **Jurisdiction** © 2010 NAVTEQ © AND ©

N/A **Existing Thru Lane**

Analysis Level

Planned Thru Lane N/A

2040 **Network Year** 4.8 miles **Corridor Length**

100 2015 Microsoft Corporation

Detailed Description and Justification

Construction of Phase 1 of the Atlanta Streetcar Expansion Strategy has been broken down into 5 smaller sections. This section is the 4.8 miles serving as a Midtown/Crosstown Corridor.

In the Region's Air Quality Conformity Analysis

Phas	se Status & Funding	Status	FISCAL	TOTAL PHASE	BREAKDOWN	OF TOTAL PHAS	E COST BY FUNI	DING SOURCE		
Info	rmation		YEAR	COST	FEDERAL STATE BONDS LOCAL/PRIVATE					
ALL	New Starts		LR 2031- 2040	\$345,600,000	\$155,520,000	\$0,000	\$0,000	\$190,080,000		
				\$345,600,000	\$155,520,000 \$0,000 \$0,000 \$190,080,000					

PE-OV: GDOT oversight services for engineering ROW: Right-of-way Acquistion SCP: Scoping PE: Preliminary engineering / engineering / design / planning ALL: Total estimated cost, inclusive of all phases

AT-278

Atlanta Region's Plan RTP (2016) PROJECT FACT SHEET

Short Title	MIDTOWN ATLANTA REGIONAL ACTIVITY CENTER - PEDESTRIAN MOBILITY AND SAFETY IMPROVEMENTS	RK Sprin	
GDOT Project No.	0012594	☆ N	IIDTOWN
Federal ID No.	N/A	stitute of AT-278	
Status	Programmed	AT-278	X
Service Type	Last Mile Connectivity / Pedestrian Facility	200	78
Sponsor	City of Atlanta, Midtown Alliance	403	78
Jurisdiction	City of Atlanta		2010 NAVTEQ © AND © 45 Microsoft Corporation
Analysis Level	Exempt from Air Quality Analysis (40 CFR 93)	TENNIA DIAGE	45 Wildiosoft Corporation
Existing Thru Lane	N/A	Network Year	TBD
Planned Thru Lane	N/A	Corridor Length	N/A miles

This project involves installing/constructing pedestrian safety improvements at several intersections adjacent to existing heavy rail stations and regional local and express bus stops. This project includes the addition of new traffic signals at seven intersections as well as rectangular rapid flash beacons (RRFBs) at five intersections. These signals are necessary to provide safe opportunities for pedestrian crossings of the Strategic Regional Throughfare Network and the Regional Strategic Transportation System corridors within Midtown. These locations were identified for improvements in the Blueprint Midtown plan. To increase the visibility of pedestrian crossings in Midtown, approximately 140 intersections will be restriped in the Midtown core. The existing striping is in poor condition and many intersections were never re-striped after resurfacing and construction projects. The project is being funded under the Last Mile Connectivity Program, a regional program defined in PLAN 2040 to improve pedestrian and bicyclist mobility, accessibility and safety along transit corridors, within employment and commercial centers, and in the vicinity of

Pha	se Status & Funding	Status	FISCAL	TOTAL PHASE	BREAKDOWN OF TOTAL PHASE COST BY FUNDING SOURCE						
Information			YEAR	COST	FEDERAL	STATE	BONDS	LOCAL/PRIVATE			
PE	STP - Urban (>200K) (ARC)	AUTH	2015	\$27,000	\$21,600	\$0,000	\$0,000	\$5,400			
CST	STP - Urban (>200K) (ARC)	AUTH	2015	\$1,750,000	\$1,400,000	\$0,000	\$0,000	\$350,000			
				\$1,777,000	\$1,421,600	\$0,000	\$0,000	\$355,400			

?

A:C

Detailed Description and Justification

other major origins and destinations such as schools.

Available Upon Request Synchro Capacity Analyses Raw Traffic Count Data

Appendix G Synchro Capacity Analyses

	۶	→	•	•	←	4	•	†	~	/	↓	√
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		1>			र्स						नाा	
Traffic Volume (vph)	0	2	7	7	16	0	0	0	0	60	1088	72
Future Volume (vph)	0	2	7	7	16	0	0	0	0	60	1088	72
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		5.3			5.3						4.4	
Lane Util. Factor		1.00			1.00						0.86	
Frpb, ped/bikes		1.00			1.00						1.00	
Flpb, ped/bikes		1.00			1.00						1.00	
Frt		0.90			1.00						0.99	
Flt Protected		1.00			0.98						1.00	
Satd. Flow (prot)		1670			1834						6325	
Flt Permitted		1.00			0.89						1.00	
Satd. Flow (perm)	0.57	1670	0.57	0.40	1656	0.40	0.00	0.00	0.02	0.02	6325	0.02
Peak-hour factor, PHF	0.56	0.56	0.56	0.48	0.48	0.48	0.92	0.92	0.92	0.93	0.93	0.93
Adj. Flow (vph)	0	4 12	12 0	15 0	33 0	0	0	0	0	65 0	1170 4	77
RTOR Reduction (vph) Lane Group Flow (vph)	0	5	0	0	48	0	0	0	0	0	1308	0
Confl. Peds. (#/hr)	74	5	U	U	40	74	U	U	U	10	1300	U
Turn Type	/4	NA		Perm	NA	74				Perm	NA	
Protected Phases		NA 8		Fellii	4					reiiii	2	
Permitted Phases		Ü		4	4					2	2	
Actuated Green, G (s)		9.0			9.0					2	101.3	
Effective Green, g (s)		9.0			9.0						101.3	
Actuated g/C Ratio		0.08			0.08						0.84	
Clearance Time (s)		5.3			5.3						4.4	
Vehicle Extension (s)		3.0			3.0						3.0	
Lane Grp Cap (vph)		125			124						5339	
v/s Ratio Prot		0.00										
v/s Ratio Perm					c0.03						0.21	
v/c Ratio		0.04			0.39						0.24	
Uniform Delay, d1		51.5			52.9						1.8	
Progression Factor		1.00			1.00						1.00	
Incremental Delay, d2		0.1			2.0						0.1	
Delay (s)		51.6			54.9						1.9	
Level of Service		D			D						Α	
Approach Delay (s)		51.6			54.9			0.0			1.9	
Approach LOS		D			D			Α			Α	
Intersection Summary												
	HCM 2000 Control Delay 4.4			H	CM 2000	Level of	Service		Α			
HCM 2000 Volume to Capac	ity ratio		0.26									
Actuated Cycle Length (s)			120.0		um of los				9.7			
Intersection Capacity Utilizat	ion		39.7%	IC	CU Level	of Service			Α			
Analysis Period (min)			15									
c Critical Lane Group												

Movement EBL EBR NBL NBT SBT SBR Lane Configurations 1 4111
Traffic Volume (veh/h) 54 0 24 1273 0 0 Future Volume (Veh/h) 54 0 24 1273 0 0 Sign Control Stop Free Free Free Grade 0% 0% 0% Peak Hour Factor 0.68 0.68 0.96 0.96 0.92 0.92 Hourly flow rate (vph) 79 0 25 1326 0 0 Pedestrians 53 2 2 2 2 2 2 2 2 2 2 2 2 2 3.5 9 3.5 9 3.5
Traffic Volume (veh/h) 54 0 24 1273 0 0 Future Volume (Veh/h) 54 0 24 1273 0 0 Sign Control Stop Free Free Free Grade 0% 0.92
Sign Control Stop Free Free Grade 0% 0% 0% Peak Hour Factor 0.68 0.68 0.96 0.92 0.92 Hourly flow rate (vph) 79 0 25 1326 0 0 Pedestrians 53 2 2 1 12.0 0.0 0
Grade 0% 0% 0% Peak Hour Factor 0.68 0.68 0.96 0.92 0.92 Hourly flow rate (vph) 79 0 25 1326 0 0 Pedestrians 53 2 2 1 12.0 0.0 0
Peak Hour Factor 0.68 0.68 0.96 0.92 0.92 Hourly flow rate (vph) 79 0 25 1326 0 0 Pedestrians 53 2 2 2 2 2 2 2 2 2 3.5 3.5 3.5 3.5 9 3.5 9 3.5 9 3.5 9 9 8 9 9 8 9 9 9 8 9 9 8 9 9 8 9
Hourly flow rate (vph) 79 0 25 1326 0 0 Pedestrians 53 2 Lane Width (ft) 12.0 0.0 Walking Speed (ft/s) 3.5 3.5 Percent Blockage 5 0 Right turn flare (veh) Median type None None Median storage veh) Upstream signal (ft) pX, platoon unblocked
Pedestrians 53 2 Lane Width (ft) 12.0 0.0 Walking Speed (ft/s) 3.5 3.5 Percent Blockage 5 0 Right turn flare (veh) None None Median type None None Median storage veh) Upstream signal (ft) pX, platoon unblocked PA
Lane Width (ft) 12.0 0.0 Walking Speed (ft/s) 3.5 3.5 Percent Blockage 5 0 Right turn flare (veh) Median type None None Median storage veh) Upstream signal (ft) pX, platoon unblocked
Walking Speed (ft/s) 3.5 3.5 Percent Blockage 5 0 Right turn flare (veh) Median type None None Median storage veh) Upstream signal (ft) pX, platoon unblocked
Percent Blockage 5 0 Right turn flare (veh) Median type None None Median storage veh) Upstream signal (ft) pX, platoon unblocked
Right turn flare (veh) Median type Median storage veh) Upstream signal (ft) pX, platoon unblocked
Median type None None Median storage veh) Upstream signal (ft) pX, platoon unblocked
Median storage veh) Upstream signal (ft) pX, platoon unblocked
Upstream signal (ft) pX, platoon unblocked
pX, platoon unblocked
0
vC, conflicting volume 436 53 53
vC1, stage 1 conf vol
vC2, stage 2 conf vol
vCu, unblocked vol 436 53 53
tC, single (s) 6.8 6.9 4.1
tC, 2 stage (s)
tF (s) 3.5 3.3 2.2
p0 queue free % 85 100 98
Direction, Lane # EB 1 NB 1 NB 2 NB 3 NB 4
Volume Total 79 214 379 379 379
Volume Left 79 25 0 0 0
Volume Right 0 0 0 0 0
cSH 512 1473 1700 1700 1700
Volume to Capacity 0.15 0.02 0.22 0.22 0.22
Queue Length 95th (ft) 14 1 0 0 0
Control Delay (s) 13.3 1.0 0.0 0.0 0.0
Lane LOS B A
Approach Delay (s) 13.3 0.2
Approach LOS B
Intersection Summary
Average Delay 0.9
Intersection Capacity Utilization 28.8% ICU Level of Service
Analysis Period (min) 15

	۶	-	•	•	←	•	4	†	/	\	↓	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations					f)	7		शा				
Traffic Volume (veh/h)	0	0	0	0	82	73	134	1427	0	0	0	0
Future Volume (Veh/h)	0	0	0	0	82	73	134	1427	0	0	0	0
Sign Control		Stop			Stop			Free			Free	
Grade		0%			0%			0%			0%	
Peak Hour Factor	0.92	0.92	0.92	0.81	0.81	0.81	0.96	0.96	0.96	0.92	0.92	0.92
Hourly flow rate (vph)	0	0	0	0	101	90	140	1486	0	0	0	0
Pedestrians		52			59			11			11	
Lane Width (ft)		0.0			12.0			12.0			0.0	
Walking Speed (ft/s)		3.5			3.5			3.5			3.5	
Percent Blockage		0			6			1			0	
Right turn flare (veh)												
Median type								None			None	
Median storage veh)												
Upstream signal (ft)												
pX, platoon unblocked												
vC, conflicting volume	855	1877	63	1836	1877	442	52			1545		
vC1, stage 1 conf vol												
vC2, stage 2 conf vol												
vCu, unblocked vol	855	1877	63	1836	1877	442	52			1545		
tC, single (s)	7.5	6.5	6.9	7.5	6.5	6.9	4.1			4.1		
tC, 2 stage (s)												
tF (s)	3.5	4.0	3.3	3.5	4.0	3.3	2.2			2.2		
p0 queue free %	0	100	100	100	0	83	91			100		
cM capacity (veh/h)	0	61	978	39	61	532	1552			402		
Direction, Lane #	WB 1	WB 2	NB 1	NB 2	NB 3	NB 4						
Volume Total	131	60	352	425	425	425						
Volume Left	0	0	140	0	0	0						
Volume Right	30	60	0	0	0	0						
cSH	76	532	1552	1700	1700	1700						
Volume to Capacity	1.72	0.11	0.09	0.25	0.25	0.25						
Queue Length 95th (ft)	281	9	7	0.25	0.25	0.25						
•					0.0	0.0						
Control Delay (s)	464.7	12.6	3.5	0.0	0.0	0.0						
Lane LOS	F 222.7	В	A									
Approach Delay (s) Approach LOS	322.7 F		0.8									
Intersection Summary												
Average Delay			34.6									
Intersection Capacity Utiliz	ation		37.7%	IC	CU Level	of Service			Α			
Analysis Period (min)			15									

	•	→	•	•	—	•	4	†	<i>></i>	/		4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations			7	ሻ	र्स						4111	
Traffic Volume (veh/h)	0	0	43	97	107	0	0	0	0	0	1025	70
Future Volume (Veh/h)	0	0	43	97	107	0	0	0	0	0	1025	70
Sign Control		Stop			Stop			Free			Free	
Grade		0%			0%			0%			0%	
Peak Hour Factor	0.72	0.72	0.72	0.86	0.86	0.86	0.92	0.92	0.92	0.94	0.94	0.94
Hourly flow rate (vph)	0	0	60	113	124	0	0	0	0	0	1090	74
Pedestrians		14			16			7			15	
Lane Width (ft)		12.0			12.0			0.0			12.0	
Walking Speed (ft/s)		3.5			3.5			3.5			3.5	
Percent Blockage		1			2			0			1	
Right turn flare (veh)												
Median type								None			None	
Median storage veh)												
Upstream signal (ft)											288	
pX, platoon unblocked	0.97	0.97	0.97	0.97	0.97		0.97					
vC, conflicting volume	1218	1157	330	356	1194	31	1178			16		
vC1, stage 1 conf vol												
vC2, stage 2 conf vol												
vCu, unblocked vol	1095	1033	185	211	1071	31	1054			16		
tC, single (s)	7.5	6.5	6.9	7.5	6.5	6.9	4.1			4.1		
tC, 2 stage (s)												
tF (s)	3.5	4.0	3.3	3.5	4.0	3.3	2.2			2.2		
p0 queue free %	100	100	92	82	40	100	100			100		
cM capacity (veh/h)	82	219	794	632	208	1006	631			1576		
Direction, Lane #	EB 1	WB 1	WB 2	SB 1	SB 2	SB 3	SB 4					
Volume Total	60	75	162	311	311	311	230					
Volume Left	0	75	38	0	0	0	0					
Volume Right	60	0	0	0	0	0	74					
cSH	794	632	246	1700	1700	1700	1700					
Volume to Capacity	0.08	0.12	0.66	0.18	0.18	0.18	0.14					
Queue Length 95th (ft)	6	10	103	0	0	0	0					
Control Delay (s)	9.9	11.5	43.7	0.0	0.0	0.0	0.0					
Lane LOS	А	В	Е									
Approach Delay (s)	9.9	33.5		0.0								
Approach LOS	Α	D										
Intersection Summary												
Average Delay			5.8									
Intersection Capacity Utiliza	ation		37.7%	IC	CU Level	of Service			Α			
Analysis Period (min)			15									

Movement EBL EBT WBT WBR SBL SBR Lane Configurations Image: Configuration of the co
Traffic Volume (veh/h) 0 78 68 0 5 5 Future Volume (Veh/h) 0 78 68 0 5 5 Sign Control Free Free Stop Grade 0% 0% 0% Peak Hour Factor 0.89 0.89 0.91 0.91 0.50 0.50 Hourly flow rate (vph) 0 88 75 0 10 10 Pedestrians 1 1 3 1 1 3 1 1 3 1 1 3 1 1 3 1 1 3 1 1 3 1 1 3 1 1 3 1 1 3 3 5 3 5 3 5 5 9 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<
Traffic Volume (veh/h) 0 78 68 0 5 5 Future Volume (Veh/h) 0 78 68 0 5 5 Sign Control Free Free Stop Grade 0% 0% 0% Peak Hour Factor 0.89 0.89 0.91 0.91 0.50 0.50 Hourly flow rate (vph) 0 88 75 0 10 10 Pedestrians 1 1 3 1 1 3 1 Lane Width (ft) 12.0 12.0 12.0 12.0 12.0 12.0 Walking Speed (ft/s) 3.5 3.5 3.5 3.5 2 1
Future Volume (Veh/h) 0 78 68 0 5 5 Sign Control Free Free Stop Stop O% O O O O O O O O O O O O None <
Grade 0% 0% 0% Peak Hour Factor 0.89 0.89 0.91 0.91 0.50 0.50 Hourly flow rate (vph) 0 88 75 0 10 10 Pedestrians 1 1 3 3 1 1 2 12.0 12.0 12.0 Walking Speed (ft/s) 3.5 3.5 3.5 3.5 3.5 9 1
Grade 0% 0% 0% Peak Hour Factor 0.89 0.89 0.91 0.91 0.50 0.50 Hourly flow rate (vph) 0 88 75 0 10 10 Pedestrians 1 1 3 3 1 1 2 12.0 12.0 12.0 Walking Speed (ft/s) 3.5 3.5 3.5 3.5 3.5 9 1
Hourly flow rate (vph) 0 88 75 0 10 10 Pedestrians 1 1 3 3 12.0 <
Pedestrians 1 1 3 Lane Width (ft) 12.0 12.0 12.0 Walking Speed (ft/s) 3.5 3.5 3.5 Percent Blockage 0 0 0 Right turn flare (veh) None None
Lane Width (ft) 12.0 12.0 Walking Speed (ft/s) 3.5 3.5 Percent Blockage 0 0 Right turn flare (veh) Median type None
Walking Speed (ft/s) 3.5 3.5 3.5 Percent Blockage 0 0 0 Right turn flare (veh) Median type None None
Percent Blockage 0 0 0 Right turn flare (veh) Median type None None
Percent Blockage 0 0 0 Right turn flare (veh) Median type None None
Right turn flare (veh) Median type None None
Median type None None
Upstream signal (ft)
pX, platoon unblocked
vC, conflicting volume 78 167 79
vC1, stage 1 conf vol
vC2, stage 2 conf vol
vCu, unblocked vol 78 167 79
tC, single (s) 4.1 6.4 6.2
tC, 2 stage (s)
tF (s) 2.2 3.5 3.3
p0 queue free % 100 99 99
cM capacity (veh/h) 1516 820 978
Direction, Lane # EB 1 WB 1 SB 1
Volume Total 88 75 20
Volume Left 0 0 10
Volume Right 0 0 10
cSH 1516 1700 892
Volume to Capacity 0.00 0.04 0.02
Queue Length 95th (ft) 0 0 2
Control Delay (s) 0.0 0.0 9.1
Lane LOS A
Approach Delay (s) 0.0 0.0 9.1
Approach LOS A
Intersection Summary
Average Delay 1.0
Intersection Capacity Utilization 14.8% ICU Level of Service
Analysis Period (min) 15

	•	4	†	~	>	↓
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	W		ĵ∍			ર્ન
Traffic Volume (veh/h)	1	13	73	0	16	72
Future Volume (Veh/h)	1	13	73	0	16	72
Sign Control	Stop		Free			Free
Grade	0%		0%			0%
Peak Hour Factor	0.70	0.70	0.91	0.91	0.82	0.82
Hourly flow rate (vph)	1	19	80	0	20	88
Pedestrians	3					
Lane Width (ft)	12.0					
Walking Speed (ft/s)	3.5					
Percent Blockage	0					
Right turn flare (veh)						
Median type			None			None
Median storage veh)						
Upstream signal (ft)						
pX, platoon unblocked						
vC, conflicting volume	211	83			83	
vC1, stage 1 conf vol						
vC2, stage 2 conf vol						
vCu, unblocked vol	211	83			83	
tC, single (s)	6.4	6.2			4.1	
tC, 2 stage (s)						
tF (s)	3.5	3.3			2.2	
p0 queue free %	100	98			99	
cM capacity (veh/h)	765	974			1510	
Direction, Lane #	WB 1	NB 1	SB 1			
Volume Total	20	80	108			
Volume Left	1	0	20			
Volume Right	19	0	0			
cSH	961	1700	1510			
Volume to Capacity	0.02	0.05	0.01			
Queue Length 95th (ft)	2	0	1			
Control Delay (s)	8.8	0.0	1.5			
Lane LOS	А		Α			
Approach Delay (s)	8.8	0.0	1.5			
Approach LOS	А					
Intersection Summary						
Average Delay			1.6			
Intersection Capacity Utiliz	ation		21.3%	IC	CU Level	of Service
Analysis Period (min)			15	70	. 5 25001	

	۶	→	•	•	←	•	•	†	/	/	ţ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	₽			4			4				
Traffic Volume (veh/h)	83	133	72	11	190	87	50	33	9	0	0	0
Future Volume (Veh/h)	83	133	72	11	190	87	50	33	9	0	0	0
Sign Control		Free			Free			Stop			Stop	
Grade		0%			0%			0%			0%	
Peak Hour Factor	0.77	0.77	0.77	0.90	0.90	0.90	0.85	0.85	0.85	0.92	0.92	0.92
Hourly flow rate (vph)	108	173	94	12	211	97	59	39	11	0	0	0
Pedestrians		9			30			131			134	
Lane Width (ft)		12.0			12.0			12.0			0.0	
Walking Speed (ft/s)		3.5			3.5			3.5			3.5	
Percent Blockage		1			3			12			0	
Right turn flare (veh)												
Median type		None			None							
Median storage veh)												
Upstream signal (ft)												
pX, platoon unblocked												
vC, conflicting volume	442			398			860	1033	381	867	1032	402
vC1, stage 1 conf vol												
vC2, stage 2 conf vol												
vCu, unblocked vol	442			398			860	1033	381	867	1032	402
tC, single (s)	4.1			4.1			7.1	6.5	6.2	7.1	6.5	6.2
tC, 2 stage (s)												
tF (s)	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free %	90			99			70	79	98	100	100	100
cM capacity (veh/h)	1118			1016			199	182	566	182	182	642
Direction, Lane #	EB 1	EB 2	WB 1	NB 1								
Volume Total	108	267	320	109								
Volume Left	108	0	12	59								
Volume Right	0	94	97	11								
cSH	1118	1700	1016	206								
Volume to Capacity	0.10	0.16	0.01	0.53								
Queue Length 95th (ft)	8	0	1	69								
Control Delay (s)	8.6	0.0	0.4	40.7								
Lane LOS	A	0.0	A	E								
Approach Delay (s)	2.5		0.4	40.7								
Approach LOS	2.0		0.1	E								
Intersection Summary												
Average Delay			6.8									
Intersection Capacity Utilizat	tion		52.1%	IC	CU Level	of Service			Α			
Analysis Period (min)			15		. 5 25101				,,			

	۶	→	•	•	←	•	•	†	/	/	↓	-√
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		₽			र्स						नीकि	
Traffic Volume (vph)	0	50	27	24	28	0	0	0	0	39	1161	97
Future Volume (vph)	0	50	27	24	28	0	0	0	0	39	1161	97
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		5.3			5.3						4.4	
Lane Util. Factor		1.00			1.00						0.86	
Frpb, ped/bikes		1.00			1.00						1.00	
Flpb, ped/bikes		1.00			1.00						1.00	
Frt		0.95			1.00						0.99	
Flt Protected		1.00			0.98						1.00	
Satd. Flow (prot)		1766			1819						6312	
Flt Permitted		1.00			0.69						1.00	
Satd. Flow (perm)		1766			1292						6312	
Peak-hour factor, PHF	0.69	0.69	0.69	0.81	0.81	0.81	0.92	0.92	0.92	0.87	0.87	0.87
Adj. Flow (vph)	0	72	39	30	35	0	0	0	0	45	1334	111
RTOR Reduction (vph)	0	20	0	0	0	0	0	0	0	0	5	0
Lane Group Flow (vph)	0	91	0	0	65	0	0	0	0	0	1485	0
Confl. Peds. (#/hr)	199		1	1		199				22		
Turn Type		NA		Perm	NA					Perm	NA	
Protected Phases		8			4						2	
Permitted Phases		40.7		4	10.7					2	07./	
Actuated Green, G (s)		12.7			12.7						97.6	
Effective Green, g (s)		12.7			12.7						97.6	
Actuated g/C Ratio		0.11 5.3			0.11 5.3						0.81 4.4	
Clearance Time (s) Vehicle Extension (s)		3.0			3.0						3.0	
Lane Grp Cap (vph) v/s Ratio Prot		186 c0.05			136						5133	
v/s Ratio Prot v/s Ratio Perm		CU.U5			0.05						0.24	
v/c Ratio		0.49			0.03						0.24	
Uniform Delay, d1		50.6			50.5						2.7	
Progression Factor		1.00			1.00						1.00	
Incremental Delay, d2		2.0			2.6						0.1	
Delay (s)		52.6			53.2						2.9	
Level of Service		52.0 D			D						Α	
Approach Delay (s)		52.6			53.2			0.0			2.9	
Approach LOS		D			D			A			A	
Intersection Summary												
HCM 2000 Control Delay			8.2	H	CM 2000	Level of S	Service		Α			
HCM 2000 Volume to Capaci	ity ratio		0.31									
Actuated Cycle Length (s)			120.0		um of los				9.7			
Intersection Capacity Utilizati	on		41.3%	IC	U Level	of Service			Α			
Analysis Period (min)			15									
c Critical Lane Group												

	۶	•	4	†	ļ	4
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	ሻ			4111		
Traffic Volume (veh/h)	91	0	52	1376	0	0
Future Volume (Veh/h)	91	0	52	1376	0	0
Sign Control	Stop			Free	Free	
Grade	0%			0%	0%	
Peak Hour Factor	0.88	0.88	0.90	0.90	0.92	0.92
Hourly flow rate (vph)	103	0	58	1529	0	0
Pedestrians	75			1		
Lane Width (ft)	12.0			12.0		
Walking Speed (ft/s)	3.5			3.5		
Percent Blockage	7			0		
Right turn flare (veh)						
Median type				None	None	
Median storage veh)						
Upstream signal (ft)						
pX, platoon unblocked						
vC, conflicting volume	573	76	75			
vC1, stage 1 conf vol						
vC2, stage 2 conf vol						
vCu, unblocked vol	573	76	75			
tC, single (s)	6.8	6.9	4.1			
tC, 2 stage (s)						
tF (s)	3.5	3.3	2.2			
p0 queue free %	74	100	96			
cM capacity (veh/h)	400	900	1414			
Direction, Lane #	EB 1	NB 1	NB 2	NB 3	NB 4	
Volume Total	103	276	437	437	437	
Volume Left	103	58	0	0	0	
Volume Right	0	0	0	0	0	
cSH	400	1414	1700	1700	1700	
Volume to Capacity	0.26	0.04	0.26	0.26	0.26	
Queue Length 95th (ft)	25	3	0	0	0	
Control Delay (s)	17.1	1.9	0.0	0.0	0.0	
Lane LOS	С	Α				
Approach Delay (s)	17.1	0.3				
Approach LOS	С					
Intersection Summary						
Average Delay			1.4			
Intersection Capacity Utilization	tion		32.7%	IC	CU Level o	of Service
Analysis Period (min)			15		2 20101 0	3011100

	٠	→	•	•	←	•	1	†	/	/	ļ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations					1>	7		वा॥				
Traffic Volume (veh/h)	0	0	0	0	109	208	68	1167	0	0	0	0
Future Volume (Veh/h)	0	0	0	0	109	208	68	1167	0	0	0	0
Sign Control		Stop			Stop			Free			Free	
Grade		0%			0%			0%			0%	
Peak Hour Factor	0.92	0.92	0.92	0.84	0.84	0.84	0.88	0.88	0.88	0.92	0.92	0.92
Hourly flow rate (vph)	0	0	0	0	130	248	77	1326	0	0	0	0
Pedestrians		69			82			25			14	
Lane Width (ft)		0.0			12.0			12.0			0.0	
Walking Speed (ft/s)		3.5			3.5			3.5			3.5	
Percent Blockage		0			8			2			0	
Right turn flare (veh)												
Median type								None			None	
Median storage veh)												
Upstream signal (ft)												
pX, platoon unblocked												
vC, conflicting volume	882	1631	94	1587	1631	428	69			1408		
vC1, stage 1 conf vol												
vC2, stage 2 conf vol												
vCu, unblocked vol	882	1631	94	1587	1631	428	69			1408		
tC, single (s)	7.5	6.5	6.9	7.5	6.5	6.9	4.1			4.1		
tC, 2 stage (s)												
tF (s)	3.5	4.0	3.3	3.5	4.0	3.3	2.2			2.2		
p0 queue free %	0	100	100	100	0	53	95			100		
cM capacity (veh/h)	0	88	922	59	88	531	1530			443		
Direction, Lane #	WB 1	WB 2	NB 1	NB 2	NB 3	NB 4						
Volume Total	213	165	266	379	379	379						
Volume Left	0	0	77	0	0	0						
Volume Right	83	165	0	0	0	0						
cSH	130	531	1530	1700	1700	1700						
Volume to Capacity	1.63	0.31	0.05	0.22	0.22	0.22						
Queue Length 95th (ft)	387	33	4	0	0	0						
Control Delay (s)	376.5	14.8	2.5	0.0	0.0	0.0						
Lane LOS	F	В	A									
Approach Delay (s)	218.3		0.5									
Approach LOS	F											
Intersection Summary												
Average Delay			46.7									
Intersection Capacity Utiliza	ation		36.3%	IC	U Level	of Service			Α			
Analysis Period (min)			15									

	۶	-	•	•	—	•	•	†	/	/	ļ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations			7	ሻ	र्स						4111	
Traffic Volume (veh/h)	0	0	156	136	48	0	0	0	0	0	1229	43
Future Volume (Veh/h)	0	0	156	136	48	0	0	0	0	0	1229	43
Sign Control		Stop			Stop			Free			Free	
Grade		0%			0%			0%			0%	
Peak Hour Factor	0.80	0.80	0.80	0.72	0.72	0.72	0.92	0.92	0.92	0.84	0.84	0.84
Hourly flow rate (vph)	0	0	195	189	67	0	0	0	0	0	1463	51
Pedestrians		22			32			7			26	
Lane Width (ft)		12.0			12.0			0.0			12.0	
Walking Speed (ft/s)		3.5			3.5			3.5			3.5	
Percent Blockage		2			3			0			2	
Right turn flare (veh)												
Median type								None			None	
Median storage veh)												
Upstream signal (ft)											288	
pX, platoon unblocked	0.95	0.95	0.95	0.95	0.95		0.95					
vC, conflicting volume	1570	1542	420	600	1568	58	1536			32		
vC1, stage 1 conf vol												
vC2, stage 2 conf vol												
vCu, unblocked vol	1360	1332	156	344	1358	58	1325			32		
tC, single (s)	7.5	6.5	6.9	7.5	6.5	6.9	4.1			4.1		
tC, 2 stage (s)												
tF (s)	3.5	4.0	3.3	3.5	4.0	3.3	2.2			2.2		
p0 queue free %	100	100	76	52	50	100	100			100		
cM capacity (veh/h)	57	139	805	395	134	942	484			1530		
Direction, Lane #	EB 1	WB 1	WB 2	SB 1	SB 2	SB 3	SB 4					
Volume Total	195	126	130	418	418	418	260					
Volume Left	0	126	63	0	0	0	0					
Volume Right	195	0	0	0	0	0	51					
cSH	805	395	197	1700	1700	1700	1700					
Volume to Capacity	0.24	0.32	0.66	0.25	0.25	0.25	0.15					
Queue Length 95th (ft)	24	34	99	0	0	0	0					
Control Delay (s)	10.9	18.3	53.1	0.0	0.0	0.0	0.0					
Lane LOS	В	С	F									
Approach Delay (s)	10.9	36.0		0.0								
Approach LOS	В	Е										
Intersection Summary												
Average Delay			5.8									
Intersection Capacity Utiliz	ation		36.3%	IC	CU Level	of Service			Α			
Analysis Period (min)			15									

	۶	→	•	•	\	4	
Movement	EBL	EBT	WBT	WBR	SBL	SBR	
Lane Configurations		4	1>		W		
Traffic Volume (veh/h)	0	83	76	0	124	115	
Future Volume (Veh/h)	0	83	76	0	124	115	
Sign Control		Free	Free		Stop		
Grade		0%	0%		0%		
Peak Hour Factor	0.74	0.74	0.79	0.79	0.88	0.88	
Hourly flow rate (vph)	0	112	96	0	141	131	
Pedestrians		6			4		
Lane Width (ft)		12.0			12.0		
Walking Speed (ft/s)		3.5			3.5		
Percent Blockage		1			0		
Right turn flare (veh)							
Median type		None	None				
Median storage veh)							
Upstream signal (ft)							
pX, platoon unblocked							
vC, conflicting volume	100				212	106	
vC1, stage 1 conf vol							
vC2, stage 2 conf vol							
vCu, unblocked vol	100				212	106	
tC, single (s)	4.1				6.4	6.2	
tC, 2 stage (s)							
tF (s)	2.2				3.5	3.3	
p0 queue free %	100				82	86	
cM capacity (veh/h)	1487				773	939	
Direction, Lane #	EB 1	WB 1	SB 1				
Volume Total	112	96	272				
Volume Left	0	0	141				
Volume Right	0	0	131				
cSH	1487	1700	845				
Volume to Capacity	0.00	0.06	0.32				
Queue Length 95th (ft)	0	0	35				
Control Delay (s)	0.0	0.0	11.3				
Lane LOS			В				
Approach Delay (s)	0.0	0.0	11.3				
Approach LOS			В				
Intersection Summary							
Average Delay			6.4				
Intersection Capacity Utilizat	ion		26.1%	IC	III evel d	of Service	
Analysis Period (min)	1011		15	10	O LOVOI C	7. 301 1100	

	•	•	†	~	>	↓	
Movement	WBL	WBR	NBT	NBR	SBL	SBT	
Lane Configurations	¥		₽			4	
Traffic Volume (veh/h)	6	5	153	5	12	72	
Future Volume (Veh/h)	6	5	153	5	12	72	
Sign Control	Stop		Free			Free	
Grade	0%		0%			0%	
Peak Hour Factor	0.55	0.55	0.88	0.88	0.84	0.84	
Hourly flow rate (vph)	11	9	174	6	14	86	
Pedestrians	10						
Lane Width (ft)	12.0						
Walking Speed (ft/s)	3.5						
Percent Blockage	1						
Right turn flare (veh)							
Median type			None			None	
Median storage veh)							
Upstream signal (ft)							
pX, platoon unblocked							
vC, conflicting volume	301	187			190		
vC1, stage 1 conf vol							
vC2, stage 2 conf vol							
vCu, unblocked vol	301	187			190		
tC, single (s)	6.4	6.2			4.1		
tC, 2 stage (s)							
tF (s)	3.5	3.3			2.2		
p0 queue free %	98	99			99		
cM capacity (veh/h)	677	847			1371		
Direction, Lane #	WB 1	NB 1	SB 1				
Volume Total	20	180	100				
Volume Left	11	0	14				
Volume Right	9	6	0				
cSH	744	1700	1371				
Volume to Capacity	0.03	0.11	0.01				
Queue Length 95th (ft)	2	0	1				
Control Delay (s)	10.0	0.0	1.1				
Lane LOS	А	0.0	Α				
Approach Delay (s)	10.0	0.0	1.1				
Approach LOS	А	0.0					
Intersection Summary							
			1.0				
Average Delay	zation			10	TIL ovol s	of Convice	
Intersection Capacity Utiliz	ZaliUII		24.0%	IC	CU Level o	n Service	
Analysis Period (min)			15				

	٠	→	•	•	←	•	•	†	/	\	ļ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	f)			4			4				
Traffic Volume (veh/h)	196	242	78	11	387	136	72	65	15	0	0	0
Future Volume (Veh/h)	196	242	78	11	387	136	72	65	15	0	0	0
Sign Control		Free			Free			Stop			Stop	
Grade		0%			0%			0%			0%	
Peak Hour Factor	0.96	0.96	0.96	0.91	0.91	0.91	0.88	0.88	0.88	0.92	0.92	0.92
Hourly flow rate (vph)	204	252	81	12	425	149	82	74	17	0	0	0
Pedestrians		38			90			409			396	
Lane Width (ft)		12.0			12.0			12.0			0.0	
Walking Speed (ft/s)		3.5			3.5			3.5			3.5	
Percent Blockage		4			9			39			0	
Right turn flare (veh)												
Median type		None			None							
Median storage veh)												
Upstream signal (ft)												
pX, platoon unblocked												
vC, conflicting volume	970			742			1671	2104	792	1724	2070	934
vC1, stage 1 conf vol												
vC2, stage 2 conf vol												
vCu, unblocked vol	970			742			1671	2104	792	1724	2070	934
tC, single (s)	4.1			4.1			7.1	6.5	6.2	7.1	6.5	6.2
tC, 2 stage (s)												
tF (s)	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free %	71			98			0	0	92	0	100	100
cM capacity (veh/h)	710			528			24	22	217	0	23	311
Direction, Lane #	EB 1	EB 2	WB 1	NB 1								
Volume Total	204	333	586	173								
Volume Left	204	0	12	82								
Volume Right	0	81	149	17								
cSH	710	1700	528	25								
Volume to Capacity	0.29	0.20	0.02	6.82								
Queue Length 95th (ft)	30	0	2	Err								
Control Delay (s)	12.1	0.0	0.6	Err								
Lane LOS	В		Α	F								
Approach Delay (s)	4.6		0.6	Err								
Approach LOS				F								
Intersection Summary												
Average Delay			1336.9									
Intersection Capacity Utiliza	ation		74.5%	IC	CU Level	of Service			D			
Analysis Period (min)			15									

	•	→	*	•	+	4	1	†	<i>></i>	/		4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations					f)	7		4111				
Traffic Volume (vph)	0	0	0	0	82	73	134	1427	0	0	0	0
Future Volume (vph)	0	0	0	0	82	73	134	1427	0	0	0	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)					4.5	4.5		4.5				
Lane Util. Factor					0.95	0.95		0.86				
Frpb, ped/bikes					1.00	0.97		1.00				
Flpb, ped/bikes					1.00	1.00		0.99				
Frt					0.99	0.85		1.00				
Flt Protected					1.00	1.00		1.00				
Satd. Flow (prot)					1743	1454		6323				
Flt Permitted					1.00	1.00		1.00				
Satd. Flow (perm)					1743	1454		6323				
Peak-hour factor, PHF	0.92	0.92	0.92	0.81	0.81	0.81	0.96	0.96	0.96	0.92	0.92	0.92
Adj. Flow (vph)	0	0	0	0	101	90	140	1486	0	0	0	0
RTOR Reduction (vph)	0	0	0	0	4	33	0	6	0	0	0	0
Lane Group Flow (vph)	0	0	0	0	106	48	0	1620	0	0	0	0
Confl. Peds. (#/hr)				11		11	52		59			
Turn Type					NA	Perm	Perm	NA				
Protected Phases					8			2				
Permitted Phases						8	2	_				
Actuated Green, G (s)					12.7	12.7	_	98.3				
Effective Green, g (s)					12.7	12.7		98.3				
Actuated g/C Ratio					0.11	0.11		0.82				
Clearance Time (s)					4.5	4.5		4.5				
Vehicle Extension (s)					3.0	3.0		3.0				
Lane Grp Cap (vph)					184	153		5179				
v/s Ratio Prot					c0.06	100		3177				
v/s Ratio Perm					00.00	0.03		0.26				
v/c Ratio					0.58	0.31		0.20				
Uniform Delay, d1					51.1	49.6		2.6				
Progression Factor					1.00	1.00		1.00				
Incremental Delay, d2					4.4	1.2		0.2				
Delay (s)					55.5	50.8		2.8				
Level of Service					55.5 E	D		Α.				
Approach Delay (s)		0.0			53.5			2.8			0.0	
Approach LOS		Α			D			Α			Α	
Intersection Summary												
HCM 2000 Control Delay			8.1	Н	CM 2000	Level of	Service		А			
HCM 2000 Volume to Capacit	v ratio		0.34	• • • • • • • • • • • • • • • • • • • •	J 2000	20.0.0.	00.1.00		, ,			
Actuated Cycle Length (s)	<i>j</i>		120.0	S	um of los	t time (s)			9.0			
Intersection Capacity Utilization	n		39.0%			of Service	_		Α.			
Analysis Period (min)			15		3 20101							
c Critical Lane Group												

7. Williams Officer	x 0(11 Ot	TCCt								, . o _,o		.p
	۶	→	•	•	←	•	4	†	/	>	ļ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	ĥ			4			4				
Traffic Volume (vph)	83	133	72	11	190	87	50	33	9	0	0	0
Future Volume (vph)	83	133	72	11	190	87	50	33	9	0	0	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	4.5	4.5			4.5			4.5				
Lane Util. Factor	1.00	1.00			1.00			1.00				
Frpb, ped/bikes	1.00	0.92			0.93			0.99				
Flpb, ped/bikes	0.87	1.00			0.99			0.99				
Frt	1.00	0.95			0.96			0.99				
Flt Protected	0.95	1.00			1.00			0.97				
Satd. Flow (prot)	1545	1619			1645			1762				
Flt Permitted	0.56	1.00			0.99			0.97				
Satd. Flow (perm)	905	1619			1627			1762				
Peak-hour factor, PHF	0.77	0.77	0.77	0.90	0.90	0.90	0.85	0.85	0.85	0.92	0.92	0.92
Adj. Flow (vph)	108	173	94	12	211	97	59	39	11	0	0	0
RTOR Reduction (vph)	0	33	0	0	26	0	0	0	0	0	0	0
Lane Group Flow (vph)	108	234	0	0	294	0	0	109	0	0	0	0
Confl. Peds. (#/hr)	134		131	131		134	9		30			
Turn Type	Perm	NA		Perm	NA		Perm	NA				
Protected Phases		4			8			2				
Permitted Phases	4			8			2					
Actuated Green, G (s)	29.5	29.5			29.5			21.5				
Effective Green, g (s)	29.5	29.5			29.5			21.5				
Actuated g/C Ratio	0.49	0.49			0.49			0.36				
Clearance Time (s)	4.5	4.5			4.5			4.5				
Vehicle Extension (s)	3.0	3.0			3.0			3.0				
Lane Grp Cap (vph)	444	796			799			631				
v/s Ratio Prot		0.14										
v/s Ratio Perm	0.12				c0.18			0.06				
v/c Ratio	0.24	0.29			0.37			0.17				
Uniform Delay, d1	8.8	9.1			9.5			13.2				
Progression Factor	1.00	1.00			1.00			0.99				
Incremental Delay, d2	1.3	0.9			1.3			0.6				
Delay (s)	10.1	10.0			10.8			13.6				
Level of Service	В	В			В			В				
Approach Delay (s)		10.0			10.8			13.6			0.0	
Approach LOS		В			В			В			Α	
Intersection Summary												
HCM 2000 Control Delay			10.8	Н	CM 2000	Level of	Service		В			
HCM 2000 Volume to Capa	city ratio		0.29									
Actuated Cycle Length (s)			60.0		um of los				9.0			
Intersection Capacity Utiliza	ition		59.2%	IC	CU Level	of Service)		В			
Analysis Period (min)			15									
c Critical Lane Group												

	۶	→	•	•	-	4	•	†	~	>	+	-√
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations					î»	7		ना				
Traffic Volume (vph)	0	0	0	0	109	208	68	1167	0	0	0	0
Future Volume (vph)	0	0	0	0	109	208	68	1167	0	0	0	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)					4.5	4.5		4.5				
Lane Util. Factor					0.95	0.95		0.86				
Frpb, ped/bikes					0.99	0.96		1.00				
Flpb, ped/bikes					1.00	1.00		0.99				
Frt					0.95	0.85		1.00				
Flt Protected					1.00	1.00		1.00				
Satd. Flow (prot)					1655	1445		6342				
Flt Permitted					1.00	1.00		1.00				
Satd. Flow (perm)					1655	1445		6342				
Peak-hour factor, PHF	0.92	0.92	0.92	0.84	0.84	0.84	0.88	0.88	0.88	0.92	0.92	0.92
Adj. Flow (vph)	0	0	0	0	130	248	77	1326	0	0	0	0
RTOR Reduction (vph)	0	0	0	0	20	20	0	4	0	0	0	0
Lane Group Flow (vph)	0	0	0	0	179	159	0	1399	0	0	0	0
Confl. Peds. (#/hr)				25		14	69		82			
Turn Type					NA	Perm	Perm	NA				
Protected Phases					8			2				
Permitted Phases						8	2					
Actuated Green, G (s)					19.1	19.1		91.9				
Effective Green, g (s)					19.1	19.1		91.9				
Actuated g/C Ratio					0.16	0.16		0.77				
Clearance Time (s)					4.5	4.5		4.5				
Vehicle Extension (s)					3.0	3.0		3.0				
Lane Grp Cap (vph)					263	229		4856				
v/s Ratio Prot					0.11							
v/s Ratio Perm						c0.11		0.22				
v/c Ratio					0.68	0.69		0.29				
Uniform Delay, d1					47.6	47.7		4.2				
Progression Factor					1.00	1.00		1.00				
Incremental Delay, d2					6.8	8.8		0.2				
Delay (s)					54.4	56.4		4.4				
Level of Service					D	Ε		Α				
Approach Delay (s)		0.0			55.4			4.4			0.0	
Approach LOS		Α			Е			Α			Α	
Intersection Summary												
HCM 2000 Control Delay			15.2	Н	CM 2000	Level of	Service		В			
HCM 2000 Volume to Capacity	y ratio		0.36									
Actuated Cycle Length (s)			120.0	S	um of los	t time (s)			9.0			
Intersection Capacity Utilization	n		37.6%			of Service	9		А			
Analysis Period (min)			15									
c Critical Lane Group												

	٠	→	•	•	•	•	4	†	/	/	↓	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	₽			4			4				
Traffic Volume (vph)	196	242	78	11	387	136	72	65	15	0	0	0
Future Volume (vph)	196	242	78	11	387	136	72	65	15	0	0	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	4.5	4.5			4.5			4.5				
Lane Util. Factor	1.00	1.00			1.00			1.00				
Frpb, ped/bikes	1.00	0.87			0.86			0.98				
Flpb, ped/bikes	0.81	1.00			0.99			0.97				
Frt	1.00	0.96			0.97			0.99				
Flt Protected	0.95	1.00			1.00			0.98				
Satd. Flow (prot)	1437	1557			1536			1713				
Flt Permitted	0.41	1.00			0.99			0.98				
Satd. Flow (perm)	618	1557			1525			1713				
Peak-hour factor, PHF	0.96	0.96	0.96	0.91	0.91	0.91	0.88	0.88	0.88	0.92	0.92	0.92
Adj. Flow (vph)	204	252	81	12	425	149	82	74	17	0	0	0
RTOR Reduction (vph)	0	19	0	0	20	0	0	0	0	0	0	0
Lane Group Flow (vph)	204	314	0	0	566	0	0	173	0	0	0	0
Confl. Peds. (#/hr)	396		409	409		396	38		90			
Heavy Vehicles (%)	2%	2%	2%	2%	2%	3%	2%	2%	2%	2%	2%	2%
Turn Type	Perm	NA		Perm	NA		Perm	NA				
Protected Phases		4			8			2				
Permitted Phases	4			8			2					
Actuated Green, G (s)	33.5	33.5			33.5			17.5				
Effective Green, g (s)	33.5	33.5			33.5			17.5				
Actuated g/C Ratio	0.56	0.56			0.56			0.29				
Clearance Time (s)	4.5	4.5			4.5			4.5				
Vehicle Extension (s)	3.0	3.0			3.0			3.0				
Lane Grp Cap (vph)	345	869			851			499				
v/s Ratio Prot		0.20										
v/s Ratio Perm	0.33				c0.37			0.10				
v/c Ratio	0.59	0.36			0.66			0.35				
Uniform Delay, d1	8.7	7.3			9.3			16.7				
Progression Factor	1.00	1.00			1.00			0.98				
Incremental Delay, d2	7.3	1.2			4.1			1.9				
Delay (s)	16.0	8.5			13.4			18.3				
Level of Service	В	Α			В			В				
Approach Delay (s)		11.3			13.4			18.3			0.0	
Approach LOS		В			В			В			Α	
Intersection Summary												
HCM 2000 Control Delay			13.2	Н	CM 2000	Level of	Service		В			
HCM 2000 Volume to Capa	acity ratio		0.56									
Actuated Cycle Length (s)	,		60.0	S	um of los	t time (s)			9.0			
Intersection Capacity Utiliz	ation		77.6%			of Service	<u>;</u>		D			
Analysis Period (min)			15									
c Critical Lane Group												

t Movement **EBL EBT EBR WBL WBT** WBR **NBL NBT** NBR **SBL SBT SBR** Lane Configurations Þ 4 वाकि 0 2 Traffic Volume (vph) 7 16 0 0 61 73 0 0 1110 Future Volume (vph) 2 7 7 0 16 0 0 0 0 61 1110 73 1900 1900 1900 Ideal Flow (vphpl) 1900 1900 1900 1900 1900 1900 1900 1900 1900 Total Lost time (s) 5.3 5.3 4.4 Lane Util. Factor 1.00 0.86 1.00 Frpb, ped/bikes 1.00 1.00 1.00 Flpb, ped/bikes 1.00 1.00 1.00 0.90 0.99 Frt 1.00 Flt Protected 1.00 0.98 1.00 Satd. Flow (prot) 1670 1834 6325 Flt Permitted 1.00 0.89 1.00 Satd. Flow (perm) 1670 1656 6325 Peak-hour factor, PHF 0.56 0.56 0.56 0.48 0.48 0.48 0.92 0.92 0.92 0.93 0.93 0.93 Adj. Flow (vph) 0 12 33 1194 78 4 15 0 0 0 0 66 0 RTOR Reduction (vph) 12 0 0 0 0 0 0 0 0 0 Lane Group Flow (vph) 0 48 1334 5 0 0 0 0 0 0 0 0 Confl. Peds. (#/hr) 74 74 10 Turn Type NA Perm NA Perm NAProtected Phases 8 4 2 **Permitted Phases** 2 4 9.0 Actuated Green, G (s) 9.0 101.3 Effective Green, g (s) 9.0 9.0 101.3 Actuated g/C Ratio 0.08 80.0 0.84 Clearance Time (s) 5.3 5.3 4.4 Vehicle Extension (s) 3.0 3.0 3.0 Lane Grp Cap (vph) 125 124 5339 v/s Ratio Prot 0.00 v/s Ratio Perm c0.03 0.21 v/c Ratio 0.04 0.39 0.25 Uniform Delay, d1 51.5 52.9 1.8 1.00 **Progression Factor** 1.00 1.00 Incremental Delay, d2 0.1 0.1 2.0 Delay (s) 51.6 54.9 2.0 Level of Service D D Α Approach Delay (s) 51.6 54.9 0.0 2.0 Approach LOS D D Α Α Intersection Summary HCM 2000 Control Delay 4.4 HCM 2000 Level of Service Α HCM 2000 Volume to Capacity ratio 0.26 Sum of lost time (s) 9.7 Actuated Cycle Length (s) 120.0 Intersection Capacity Utilization 40.1% ICU Level of Service Α Analysis Period (min) 15 c Critical Lane Group

	•	•	1	†	ţ	4		
Movement	EBL	EBR	NBL	NBT	SBT	SBR		
Lane Configurations	Ť			4111				
Traffic Volume (veh/h)	55	0	24	1299	0	0		
Future Volume (Veh/h)	55	0	24	1299	0	0		
Sign Control	Stop			Free	Free			
Grade	0%			0%	0%			
Peak Hour Factor	0.68	0.68	0.96	0.96	0.92	0.92		
Hourly flow rate (vph)	81	0	25	1353	0	0		
Pedestrians	53				2			
Lane Width (ft)	12.0				0.0			
Walking Speed (ft/s)	3.5				3.5			
Percent Blockage	5				0			
Right turn flare (veh)								
Median type				None	None			
Median storage veh)								
Upstream signal (ft)								
pX, platoon unblocked								
vC, conflicting volume	443	53	53					
vC1, stage 1 conf vol	110	00	00					
vC2, stage 2 conf vol								
vCu, unblocked vol	443	53	53					
tC, single (s)	6.8	6.9	4.1					
tC, 2 stage (s)	0.0	0.7	7.1					
tF (s)	3.5	3.3	2.2					
p0 queue free %	84	100	98					
cM capacity (veh/h)	507	953	1473					
<u> </u>				ND 2	ND 4			
Direction, Lane #	EB 1	NB 1	NB 2	NB 3	NB 4			
Volume Total	81	218	387	387	387			
Volume Left	81	25	0	0	0			
Volume Right	0	0	0	0	0			
cSH	507	1473	1700	1700	1700			
Volume to Capacity	0.16	0.02	0.23	0.23	0.23			
Queue Length 95th (ft)	14	1	0	0	0			
Control Delay (s)	13.5	1.0	0.0	0.0	0.0			
Lane LOS	В	А						
Approach Delay (s)	13.5	0.2						
Approach LOS	В							
Intersection Summary								
Average Delay			0.9					
Intersection Capacity Utiliza	ation		29.2%	IC	CU Level o	f Service	А	
Analysis Period (min)			15					

	۶	→	•	•	←	•	1	†	/	/	+	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations					1>	7		4ा।।				
Traffic Volume (veh/h)	0	0	0	0	84	74	137	1456	0	0	0	0
Future Volume (Veh/h)	0	0	0	0	84	74	137	1456	0	0	0	0
Sign Control		Stop			Stop			Free			Free	
Grade		0%			0%			0%			0%	
Peak Hour Factor	0.92	0.92	0.92	0.81	0.81	0.81	0.96	0.96	0.96	0.92	0.92	0.92
Hourly flow rate (vph)	0	0	0	0	104	91	143	1517	0	0	0	0
Pedestrians		52			59			11			11	
Lane Width (ft)		0.0			12.0			12.0			0.0	
Walking Speed (ft/s)		3.5			3.5			3.5			3.5	
Percent Blockage		0			6			1			0	
Right turn flare (veh)												
Median type								None			None	
Median storage veh)												
Upstream signal (ft)												
pX, platoon unblocked												
vC, conflicting volume	871	1914	63	1873	1914	449	52			1576		
vC1, stage 1 conf vol												
vC2, stage 2 conf vol												
vCu, unblocked vol	871	1914	63	1873	1914	449	52			1576		
tC, single (s)	7.5	6.5	6.9	7.5	6.5	6.9	4.1			4.1		
tC, 2 stage (s)												
tF (s)	3.5	4.0	3.3	3.5	4.0	3.3	2.2			2.2		
p0 queue free %	0	100	100	100	0	83	91			100		
cM capacity (veh/h)	0	57	978	37	57	526	1552			391		
Direction, Lane #	WB 1	WB 2	NB 1	NB 2	NB 3	NB 4						
Volume Total	134	61	360	433	433	433						
Volume Left	0	0	143	0	0	0						
Volume Right	30	61	0	0	0	0						
cSH	72	526	1552	1700	1700	1700						
Volume to Capacity	1.87	0.12	0.09	0.25	0.25	0.25						
Queue Length 95th (ft)	300	10	8	0	0	0						
Control Delay (s)	533.6	12.7	3.5	0.0	0.0	0.0						
Lane LOS	F	В	Α									
Approach Delay (s)	371.6		0.8									
Approach LOS	F											
Intersection Summary												
Average Delay			39.7									
Intersection Capacity Utiliz	ation		38.2%	IC	U Level	of Service			Α			
Analysis Period (min)			15									

	۶	→	•	•	•	•	4	†	/	>	↓	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations			7	¥	ર્ન						411 1	
Traffic Volume (veh/h)	0	0	44	99	109	0	0	0	0	0	1046	71
Future Volume (Veh/h)	0	0	44	99	109	0	0	0	0	0	1046	71
Sign Control		Stop			Stop			Free			Free	
Grade		0%			0%			0%			0%	
Peak Hour Factor	0.72	0.72	0.72	0.86	0.86	0.86	0.92	0.92	0.92	0.94	0.94	0.94
Hourly flow rate (vph)	0	0	61	115	127	0	0	0	0	0	1113	76
Pedestrians		14			16			7			15	
Lane Width (ft)		12.0			12.0			0.0			12.0	
Walking Speed (ft/s)		3.5			3.5			3.5			3.5	
Percent Blockage		1			2			0			1	
Right turn flare (veh)												
Median type								None			None	
Median storage veh)												
Upstream signal (ft)											288	
pX, platoon unblocked	0.97	0.97	0.97	0.97	0.97		0.97					
vC, conflicting volume	1244	1181	337	362	1219	31	1203			16		
vC1, stage 1 conf vol												
vC2, stage 2 conf vol												
vCu, unblocked vol	1115	1051	184	210	1090	31	1073			16		
tC, single (s)	7.5	6.5	6.9	7.5	6.5	6.9	4.1			4.1		
tC, 2 stage (s)												
tF (s)	3.5	4.0	3.3	3.5	4.0	3.3	2.2			2.2		
p0 queue free %	100	100	92	82	37	100	100			100		
cM capacity (veh/h)	75	213	794	631	202	1006	620			1576		
Direction, Lane #	EB 1	WB 1	WB 2	SB 1	SB 2	SB 3	SB 4					
Volume Total	61	77	165	318	318	318	235					
Volume Left	0	77	38	0	0	0	0					
Volume Right	61	0	0	0	0	0	76					
cSH	794	631	240	1700	1700	1700	1700					
Volume to Capacity	0.08	0.12	0.69	0.19	0.19	0.19	0.14					
Queue Length 95th (ft)	6	10	112	0	0	0	0					
Control Delay (s)	9.9	11.5	47.7	0.0	0.0	0.0	0.0					
Lane LOS	А	В	Е									
Approach Delay (s)	9.9	36.2		0.0								
Approach LOS	А	Е										
Intersection Summary												
Average Delay			6.3									
Intersection Capacity Utiliza	ation		38.2%	IC	U Level	of Service			Α			
Analysis Period (min)			15									

	۶	→	←	•	>	✓		
Movement	EBL	EBT	WBT	WBR	SBL	SBR		
Lane Configurations		ર્ન	ĵ»		W			
Traffic Volume (veh/h)	0	80	69	0	5	5		
Future Volume (Veh/h)	0	80	69	0	5	5		
Sign Control		Free	Free		Stop			
Grade		0%	0%		0%			
Peak Hour Factor	0.89	0.89	0.91	0.91	0.50	0.50		
Hourly flow rate (vph)	0	90	76	0	10	10		
Pedestrians		1	1		3			
Lane Width (ft)		12.0	12.0		12.0			
Walking Speed (ft/s)		3.5	3.5		3.5			
Percent Blockage		0	0		0			
Right turn flare (veh)								
Median type		None	None					
Median storage veh)								
Upstream signal (ft)								
pX, platoon unblocked								
vC, conflicting volume	79				170	80		
vC1, stage 1 conf vol								
vC2, stage 2 conf vol								
vCu, unblocked vol	79				170	80		
tC, single (s)	4.1				6.4	6.2		
tC, 2 stage (s)								
tF (s)	2.2				3.5	3.3		
p0 queue free %	100				99	99		
cM capacity (veh/h)	1515				817	976		
Direction, Lane #	EB 1	WB 1	SB 1					
Volume Total	90	76	20					
Volume Left	0	0	10					
Volume Right	0	0	10					
cSH	1515	1700	890					
Volume to Capacity	0.00	0.04	0.02					
Queue Length 95th (ft)	0	0	2					
Control Delay (s)	0.0	0.0	9.1					
Lane LOS			Α					
Approach Delay (s)	0.0	0.0	9.1					
Approach LOS			А					
Intersection Summary								
Average Delay			1.0					
Intersection Capacity Utiliza	ation		14.9%	IC	U Level c	of Service	Α	
Analysis Period (min)			15					

	•	•	†	/	>	ļ	
Movement	WBL	WBR	NBT	NBR	SBL	SBT	
Lane Configurations	W		ĵ»			4	
Traffic Volume (veh/h)	1	13	74	0	16	73	
Future Volume (Veh/h)	1	13	74	0	16	73	
Sign Control	Stop		Free			Free	
Grade	0%		0%			0%	
Peak Hour Factor	0.70	0.70	0.91	0.91	0.82	0.82	
Hourly flow rate (vph)	1	19	81	0	20	89	
Pedestrians	3						
ane Width (ft)	12.0						
Walking Speed (ft/s)	3.5						
Percent Blockage	0						
Right turn flare (veh)							
Median type			None			None	
Median storage veh)							
Upstream signal (ft)							
oX, platoon unblocked							
/C, conflicting volume	213	84			84		
C1, stage 1 conf vol	210	01			01		
C2, stage 2 conf vol							
Cu, unblocked vol	213	84			84		
C, single (s)	6.4	6.2			4.1		
:C, 2 stage (s)	0.1	0.2					
F (s)	3.5	3.3			2.2		
oO queue free %	100	98			99		
cM capacity (veh/h)	763	972			1508		
· · ·			CD 4		1000		
Direction, Lane #	WB 1	NB 1	SB 1				
Volume Total	20	81	109				
/olume Left	1	0	20				
/olume Right	19	0	0				
SH	959	1700	1508				
Volume to Capacity	0.02	0.05	0.01				
Queue Length 95th (ft)	2	0	1				
Control Delay (s)	8.8	0.0	1.4				
Lane LOS	A		Α				
Approach Delay (s)	8.8	0.0	1.4				
Approach LOS	Α						
ntersection Summary							
Average Delay			1.6				
ntersection Capacity Utilization	ation		21.4%	IC	U Level	of Service	А
Analysis Period (min)			15				

	۶	→	•	•	←	4	•	†	/	/	+	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	₽			4			4				
Traffic Volume (veh/h)	85	136	73	11	194	89	51	34	9	0	0	0
Future Volume (Veh/h)	85	136	73	11	194	89	51	34	9	0	0	0
Sign Control		Free			Free			Stop			Stop	
Grade		0%			0%			0%			0%	
Peak Hour Factor	0.77	0.77	0.77	0.90	0.90	0.90	0.85	0.85	0.85	0.92	0.92	0.92
Hourly flow rate (vph)	110	177	95	12	216	99	60	40	11	0	0	0
Pedestrians		9			30			131			134	
Lane Width (ft)		12.0			12.0			12.0			0.0	
Walking Speed (ft/s)		3.5			3.5			3.5			3.5	
Percent Blockage		1			3			12			0	
Right turn flare (veh)												
Median type		None			None							
Median storage veh)												
Upstream signal (ft)												
pX, platoon unblocked												
vC, conflicting volume	449			403			874	1048	386	882	1046	408
vC1, stage 1 conf vol												
vC2, stage 2 conf vol												
vCu, unblocked vol	449			403			874	1048	386	882	1046	408
tC, single (s)	4.1			4.1			7.1	6.5	6.2	7.1	6.5	6.2
tC, 2 stage (s)												
tF (s)	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free %	90			99			69	77	98	100	100	100
cM capacity (veh/h)	1111			1012			195	177	563	176	178	637
Direction, Lane #	EB 1	EB 2	WB 1	NB 1								
Volume Total	110	272	327	111								
Volume Left	110	0	12	60								
Volume Right	0	95	99	11								
cSH	1111	1700	1012	201								
Volume to Capacity	0.10	0.16	0.01	0.55								
Queue Length 95th (ft)	8	0.10	1	74								
Control Delay (s)	8.6	0.0	0.4	43.2								
Lane LOS	Α	0.0	Α	+3.2 E								
Approach Delay (s)	2.5		0.4	43.2								
Approach LOS	2.5		0.4	+3.2 E								
Intersection Summary												
Average Delay			7.2									
Intersection Capacity Utiliz	ation		52.7%	IC	CU Level	of Service			Α			
Analysis Period (min)	-		15									

	۶	→	*	•	←	4	1	†	<i>></i>	/	Ţ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		₽			र्स						सांक्रि	
Traffic Volume (vph)	0	51	28	24	29	0	0	0	0	40	1184	99
Future Volume (vph)	0	51	28	24	29	0	0	0	0	40	1184	99
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		5.3			5.3						4.4	
Lane Util. Factor		1.00			1.00						0.86	
Frpb, ped/bikes		0.99			1.00						1.00	
Flpb, ped/bikes		1.00			1.00						1.00	
Frt		0.95			1.00						0.99	
Flt Protected		1.00			0.98						1.00	
Satd. Flow (prot)		1764			1820						6311	
Flt Permitted		1.00			0.69						1.00	
Satd. Flow (perm)	0.70	1764	0.70	0.01	1278	0.01	0.00	0.00	0.00	0.07	6311	0.07
Peak-hour factor, PHF	0.69	0.69	0.69	0.81	0.81	0.81	0.92	0.92	0.92	0.87	0.87	0.87
Adj. Flow (vph)	0	74 21	41	30	36	0	0	0	0	46	1361	114
RTOR Reduction (vph)	0	94	0	0	0 66	0	0	0	0	0	6 1515	0
Lane Group Flow (vph) Confl. Peds. (#/hr)	199	94	1	1	00	199	U	U	U	0 22	1010	0
	199	NA		Perm	NA	177				Perm	NA	
Turn Type Protected Phases		NA 8		Pellii	1NA 4					Pellii	NA 2	
Permitted Phases		0		4	4					2	Z	
Actuated Green, G (s)		12.9		4	12.9					2	97.4	
Effective Green, g (s)		12.9			12.7						97.4	
Actuated g/C Ratio		0.11			0.11						0.81	
Clearance Time (s)		5.3			5.3						4.4	
Vehicle Extension (s)		3.0			3.0						3.0	
Lane Grp Cap (vph)		189			137						5122	
v/s Ratio Prot		c0.05			107						0122	
v/s Ratio Perm					0.05						0.24	
v/c Ratio		0.50			0.48						0.30	
Uniform Delay, d1		50.5			50.4						2.8	
Progression Factor		1.00			1.00						1.00	
Incremental Delay, d2		2.1			2.7						0.1	
Delay (s)		52.6			53.1						2.9	
Level of Service		D			D						Α	
Approach Delay (s)		52.6			53.1			0.0			2.9	
Approach LOS		D			D			Α			Α	
Intersection Summary												
HCM 2000 Control Delay			8.2	H	CM 2000	Level of	Service		Α			
HCM 2000 Volume to Capacit	ty ratio		0.32									
Actuated Cycle Length (s)			120.0		um of los				9.7			
Intersection Capacity Utilization	on		41.7%	IC	U Level	of Service			Α			
Analysis Period (min)			15									
c Critical Lane Group												

	•	•	•	†	ļ	✓
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	ሻ			4111		
Traffic Volume (veh/h)	93	0	53	1404	0	0
Future Volume (Veh/h)	93	0	53	1404	0	0
Sign Control	Stop			Free	Free	
Grade	0%			0%	0%	
Peak Hour Factor	0.88	0.88	0.90	0.90	0.92	0.92
Hourly flow rate (vph)	106	0	59	1560	0	0
Pedestrians	75			1		
Lane Width (ft)	12.0			12.0		
Walking Speed (ft/s)	3.5			3.5		
Percent Blockage	7			0		
Right turn flare (veh)						
Median type				None	None	
Median storage veh)						
Upstream signal (ft)						
pX, platoon unblocked						
vC, conflicting volume	583	76	75			
vC1, stage 1 conf vol						
vC2, stage 2 conf vol						
vCu, unblocked vol	583	76	75			
tC, single (s)	6.8	6.9	4.1			
tC, 2 stage (s)						
tF (s)	3.5	3.3	2.2			
p0 queue free %	73	100	96			
cM capacity (veh/h)	394	900	1414			
Direction, Lane #	EB 1	NB 1	NB 2	NB 3	NB 4	
Volume Total	106	282	446	446	446	
Volume Left	106	59	0	0	0	
	0	0	0	0	0	
Volume Right cSH	394	1414	1700	1700	1700	
	0.27	0.04	0.26	0.26	0.26	
Volume to Capacity	0.27 27					
Queue Length 95th (ft)		3	0	0	0	
Control Delay (s)	17.5	1.9	0.0	0.0	0.0	
Lane LOS	C	A				
Approach LOS	17.5	0.3				
Approach LOS	С					
Intersection Summary						
Average Delay			1.4			
Intersection Capacity Utiliza	ation		33.2%	IC	CU Level o	of Service
Analysis Period (min)			15			

	۶	→	•	•	←	•	1	†	/	/	+	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations					₽	7		4ा।।				
Traffic Volume (veh/h)	0	0	0	0	111	212	69	1190	0	0	0	0
Future Volume (Veh/h)	0	0	0	0	111	212	69	1190	0	0	0	0
Sign Control		Stop			Stop			Free			Free	
Grade		0%			0%			0%			0%	
Peak Hour Factor	0.92	0.92	0.92	0.84	0.84	0.84	0.88	0.88	0.88	0.92	0.92	0.92
Hourly flow rate (vph)	0	0	0	0	132	252	78	1352	0	0	0	0
Pedestrians		69			82			25			14	
Lane Width (ft)		0.0			12.0			12.0			0.0	
Walking Speed (ft/s)		3.5			3.5			3.5			3.5	
Percent Blockage		0			8			2			0	
Right turn flare (veh)												
Median type								None			None	
Median storage veh)												
Upstream signal (ft)												
pX, platoon unblocked												
vC, conflicting volume	895	1659	94	1615	1659	434	69			1434		
vC1, stage 1 conf vol												
vC2, stage 2 conf vol												
vCu, unblocked vol	895	1659	94	1615	1659	434	69			1434		
tC, single (s)	7.5	6.5	6.9	7.5	6.5	6.9	4.1			4.1		
tC, 2 stage (s)												
tF (s)	3.5	4.0	3.3	3.5	4.0	3.3	2.2			2.2		
p0 queue free %	0	100	100	100	0	52	95			100		
cM capacity (veh/h)	0	85	922	56	85	525	1530			433		
Direction, Lane #	WB 1	WB 2	NB 1	NB 2	NB 3	NB 4						
Volume Total	216	168	271	386	386	386						
Volume Left	0	0	78	0	0	0						
Volume Right	84	168	0	0	0	0						
cSH	125	525	1530	1700	1700	1700						
Volume to Capacity	1.72	0.32	0.05	0.23	0.23	0.23						
Queue Length 95th (ft)	407	34	4	0	0	0						
Control Delay (s)	416.4	15.0	2.5	0.0	0.0	0.0						
Lane LOS	F	С	Α									
Approach Delay (s)	240.8		0.5									
Approach LOS	F											
Intersection Summary												
Average Delay			51.3									
Intersection Capacity Utiliz	ation		36.8%	IC	U Level	of Service			Α			
Analysis Period (min)	-		15									

Movement Lane Configurations Traffic Volume (veh/h) Future Volume (Veh/h)	0 0 0	0 0 Stop 0%	EBR 159 159	WBL 139 139	WBT ♣ 49	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Traffic Volume (veh/h)	0.80	0 Stop	159	139								
	0.80	0 Stop			40						4111	
Future Volume (Veh/h)	0.80	Stop	159	120	49	0	0	0	0	0	1254	44
				137	49	0	0	0	0	0	1254	44
Sign Control		n%			Stop			Free			Free	
Grade		0 70			0%			0%			0%	
Peak Hour Factor		0.80	0.80	0.72	0.72	0.72	0.92	0.92	0.92	0.84	0.84	0.84
Hourly flow rate (vph)	0	0	199	193	68	0	0	0	0	0	1493	52
Pedestrians		22			32			7			26	
Lane Width (ft)		12.0			12.0			0.0			12.0	
Walking Speed (ft/s)		3.5			3.5			3.5			3.5	
Percent Blockage		2			3			0			2	
Right turn flare (veh)												
Median type								None			None	
Median storage veh)												
Upstream signal (ft)											288	
pX, platoon unblocked	0.95	0.95	0.95	0.95	0.95		0.95					
vC, conflicting volume	1601	1573	428	611	1599	58	1567			32		
vC1, stage 1 conf vol			,									
vC2, stage 2 conf vol												
vCu, unblocked vol	1382	1353	151	343	1380	58	1347			32		
tC, single (s)	7.5	6.5	6.9	7.5	6.5	6.9	4.1			4.1		
tC, 2 stage (s)												
tF (s)	3.5	4.0	3.3	3.5	4.0	3.3	2.2			2.2		
p0 queue free %	100	100	75	51	47	100	100			100		
cM capacity (veh/h)	53	134	810	393	129	942	473			1530		
Direction, Lane #	EB 1	WB 1	WB 2	SB 1	SB 2	SB 3	SB 4					
Volume Total	199	129	132	427	427	427	265					
Volume Left	0	129	64	0	0	0	0					
Volume Right	199	0	0	0	0	0	52					
cSH	810	393	192	1700	1700	1700	1700					
Volume to Capacity	0.25	0.33	0.69	0.25	0.25	0.25	0.16					
Queue Length 95th (ft)	24	35	106	0.23	0.23	0.23	0.10					
Control Delay (s)	10.9	18.6	57.3	0.0	0.0	0.0	0.0					
Lane LOS	В	C	57.5 F	0.0	0.0	0.0	0.0					
Approach Delay (s)	10.9	38.2	- 1	0.0								
Approach LOS	В	50.2 E		0.0								
· ·												
Intersection Summary Average Delay			6.1									
Intersection Capacity Utilization	on		36.8%	IC	'III ovol i	of Service			А			
Analysis Period (min)	OH		15	10	O LEVEL	JI JUI VICE						

	۶	→	←	•	>	4
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		4	ĵ.		W	
Traffic Volume (veh/h)	0	85	78	0	126	117
Future Volume (Veh/h)	0	85	78	0	126	117
Sign Control		Free	Free		Stop	
Grade		0%	0%		0%	
Peak Hour Factor	0.74	0.74	0.79	0.79	0.88	0.88
Hourly flow rate (vph)	0	115	99	0	143	133
Pedestrians		6			4	
Lane Width (ft)		12.0			12.0	
Walking Speed (ft/s)		3.5			3.5	
Percent Blockage		1			0	
Right turn flare (veh)						
Median type		None	None			
Median storage veh)						
Upstream signal (ft)						
pX, platoon unblocked						
vC, conflicting volume	103				218	109
vC1, stage 1 conf vol						
vC2, stage 2 conf vol						
vCu, unblocked vol	103				218	109
tC, single (s)	4.1				6.4	6.2
tC, 2 stage (s)						
tF (s)	2.2				3.5	3.3
p0 queue free %	100				81	86
cM capacity (veh/h)	1483				767	936
Direction, Lane #	EB 1	WB 1	SB 1			
Volume Total	115	99	276			
Volume Left	0	0	143			
Volume Right	0	0	133			
cSH	1483	1700	840			
Volume to Capacity	0.00	0.06	0.33			
Queue Length 95th (ft)	0	0	36			
Control Delay (s)	0.0	0.0	11.4			
Lane LOS			В			
Approach Delay (s)	0.0	0.0	11.4			
Approach LOS			В			
Intersection Summary						
Average Delay			6.4			
Intersection Capacity Utiliz	ation		26.4%	IC	U Level o	of Service
Analysis Period (min)			15			
Joio i oriou (iiiii)			10			

	•	•	†	/	>	ţ	
Movement	WBL	WBR	NBT	NBR	SBL	SBT	
Lane Configurations	¥		f)			4	
Traffic Volume (veh/h)	6	5	156	5	12	73	
Future Volume (Veh/h)	6	5	156	5	12	73	
Sign Control	Stop		Free			Free	
Grade	0%		0%			0%	
Peak Hour Factor	0.55	0.55	0.88	0.88	0.84	0.84	
Hourly flow rate (vph)	11	9	177	6	14	87	
Pedestrians	10						
Lane Width (ft)	12.0						
Walking Speed (ft/s)	3.5						
Percent Blockage	1						
Right turn flare (veh)							
Median type			None			None	
Median storage veh)							
Upstream signal (ft)							
pX, platoon unblocked							
vC, conflicting volume	305	190			193		
vC1, stage 1 conf vol							
vC2, stage 2 conf vol							
vCu, unblocked vol	305	190			193		
tC, single (s)	6.4	6.2			4.1		
tC, 2 stage (s)							
tF (s)	3.5	3.3			2.2		
p0 queue free %	98	99			99		
cM capacity (veh/h)	673	844			1367		
Direction, Lane #	WB 1	NB 1	SB 1				
Volume Total	20	183	101				
Volume Left	11	0	14				
Volume Right	9	6	0				
cSH	741	1700	1367				
Volume to Capacity	0.03	0.11	0.01				
Queue Length 95th (ft)	2	0	1				
Control Delay (s)	10.0	0.0	1.1				
Lane LOS	Α		Α				
Approach Delay (s)	10.0	0.0	1.1				
Approach LOS	Α						
Intersection Summary							
Average Delay			1.0				
Intersection Capacity Utilizati	ion		24.0%	IC	U Level o	of Service	
Analysis Period (min)			15				

	•	→	\rightarrow	•	•	•	•	†	/	>	↓	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	£			4			4				
Traffic Volume (veh/h)	200	247	80	11	395	139	73	66	15	0	0	0
Future Volume (Veh/h)	200	247	80	11	395	139	73	66	15	0	0	0
Sign Control		Free			Free			Stop			Stop	
Grade		0%			0%			0%			0%	
Peak Hour Factor	0.96	0.96	0.96	0.91	0.91	0.91	0.88	0.88	0.88	0.92	0.92	0.92
Hourly flow rate (vph)	208	257	83	12	434	153	83	75	17	0	0	0
Pedestrians		38			90			409			396	
Lane Width (ft)		12.0			12.0			12.0			0.0	
Walking Speed (ft/s)		3.5			3.5			3.5			3.5	
Percent Blockage		4			9			39			0	
Right turn flare (veh)												
Median type		None			None							
Median storage veh)												
Upstream signal (ft)												
pX, platoon unblocked												
vC, conflicting volume	983			749			1696	2130	798	1748	2096	944
vC1, stage 1 conf vol												
vC2, stage 2 conf vol												
vCu, unblocked vol	983			749			1696	2130	798	1748	2096	944
tC, single (s)	4.1			4.1			7.1	6.5	6.2	7.1	6.5	6.2
tC, 2 stage (s)												
tF (s)	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free %	70			98			0	0	92	0	100	100
cM capacity (veh/h)	703			525			23	21	216	0	22	306
Direction, Lane #	EB 1	EB 2	WB 1	NB 1								
Volume Total	208	340	599	175								
Volume Left	208	0	12	83								
Volume Right	0	83	153	17								
cSH	703	1700	525	24								
Volume to Capacity	0.30	0.20	0.02	7.26								
Queue Length 95th (ft)	31	0	2	Err								
Control Delay (s)	12.3	0.0	0.7	Err								
Lane LOS	В		Α	F								
Approach Delay (s)	4.7		0.7	Err								
Approach LOS				F								
Intersection Summary												
Average Delay			1325.8									
Intersection Capacity Utiliza	ation		75.5%	IC	CU Level	of Service			D			
Analysis Period (min)			15									

	۶	→	•	•	—	•	•	†	/	/	+	√
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations					ĵ∍	7		4ा।।				
Traffic Volume (vph)	0	0	0	0	84	74	137	1456	0	0	0	0
Future Volume (vph)	0	0	0	0	84	74	137	1456	0	0	0	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)					4.5	4.5		4.5				
Lane Util. Factor					0.95	0.95		0.86				
Frpb, ped/bikes					1.00	0.97		1.00				
Flpb, ped/bikes					1.00	1.00		0.99				
Frt					0.99	0.85		1.00				
Flt Protected					1.00	1.00		1.00				
Satd. Flow (prot)					1744	1454		6323				
Flt Permitted					1.00	1.00		1.00				
Satd. Flow (perm)					1744	1454		6323				
Peak-hour factor, PHF	0.92	0.92	0.92	0.81	0.81	0.81	0.96	0.96	0.96	0.92	0.92	0.92
Adj. Flow (vph)	0	0	0	0	104	91	143	1517	0	0	0	0
RTOR Reduction (vph)	0	0	0	0	4	32	0	7	0	0	0	0
Lane Group Flow (vph)	0	0	0	0	109	50	0	1653	0	0	0	0
Confl. Peds. (#/hr)				11		11	52		59			
Turn Type					NA	Perm	Perm	NA				
Protected Phases					8		•	2				
Permitted Phases					10.0	8	2	00.1				
Actuated Green, G (s)					12.9	12.9		98.1				
Effective Green, g (s)					12.9	12.9		98.1				
Actuated g/C Ratio					0.11	0.11		0.82				
Clearance Time (s)					4.5	4.5		4.5				
Vehicle Extension (s)					3.0	3.0		3.0				
Lane Grp Cap (vph)					187	156		5169				
v/s Ratio Prot					c0.06	0.00		0.27				
v/s Ratio Perm					0.50	0.03		0.26				
v/c Ratio					0.59	0.32		0.32				
Uniform Delay, d1					51.0	49.5		2.7 1.00				
Progression Factor					1.00 4.6	1.00 1.2		0.2				
Incremental Delay, d2					55.6	50.7		2.9				
Delay (s) Level of Service					33.0 E	50.7 D						
Approach Delay (s)		0.0			53.5	U		A 2.9			0.0	
Approach LOS		0.0 A			55.5 D			2.9 A			Α	
Intersection Summary												
HCM 2000 Control Delay			8.2	Н	CM 2000	Level of	Service		A			
HCM 2000 Volume to Capacit	v ratio		0.35	11	CIVI 2000	LOVOI OI	COLAICC					
Actuated Cycle Length (s)	Jano		120.0	Si	um of los	t time (s)			9.0			
Intersection Capacity Utilization	n		39.6%			of Service	<u> </u>		7.0 A			
Analysis Period (min)			15	10	J LOVOI V	O 01 V10C			,,			
c Critical Lane Group			10									

	۶	→	•	•	—	•	4	†	~	\	+	√
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	f)			44			44				
Traffic Volume (vph)	85	136	73	11	194	89	51	34	9	0	0	0
Future Volume (vph)	85	136	73	11	194	89	51	34	9	0	0	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	4.5	4.5			4.5			4.5				
Lane Util. Factor	1.00	1.00			1.00			1.00				
Frpb, ped/bikes	1.00	0.92			0.93			0.99				
Flpb, ped/bikes	0.88	1.00			0.99			0.99				
Frt	1.00	0.95			0.96			0.99				
Flt Protected	0.95	1.00			1.00			0.97				
Satd. Flow (prot)	1548	1621			1646			1763				
Flt Permitted	0.55	1.00			0.99			0.97				
Satd. Flow (perm)	897	1621			1628			1763				
Peak-hour factor, PHF	0.77	0.77	0.77	0.90	0.90	0.90	0.85	0.85	0.85	0.92	0.92	0.92
Adj. Flow (vph)	110	177	95	12	216	99	60	40	11	0	0	0
RTOR Reduction (vph)	0	32	0	0	26	0	0	0	0	0	0	0
Lane Group Flow (vph)	110	240	0	0	301	0	0	111	0	0	0	0
Confl. Peds. (#/hr)	134	2.10	131	131	001	134	9		30			Ü
Turn Type	Perm	NA	101	Perm	NA	101	Perm	NA				
Protected Phases	I CIIII	4		I CIIII	8		I CIIII	2				
Permitted Phases	4	7		8	U		2	2				
Actuated Green, G (s)	29.5	29.5		0	29.5			21.5				
Effective Green, g (s)	29.5	29.5			29.5			21.5				
Actuated g/C Ratio	0.49	0.49			0.49			0.36				
Clearance Time (s)	4.5	4.5			4.5			4.5				
Vehicle Extension (s)	3.0	3.0			3.0			3.0				
Lane Grp Cap (vph)	441	796			800			631				
v/s Ratio Prot	441	0.15			800			031				
v/s Ratio Perm	0.12	0.13			c0.18			0.06				
v/c Ratio	0.12	0.30			0.38			0.00				
Uniform Delay, d1	8.8	9.1			9.5			13.2				
Progression Factor	1.00	1.00			1.00			0.98				
Incremental Delay, d2	1.00	1.00			1.00			0.76				
Delay (s)	10.2	10.1			10.9			13.5				
Level of Service	10.2 B	В			10.9 B			13.5 B				
Approach Delay (s)	Ь	10.1			10.9			13.5			0.0	
Approach LOS		В			10.9 B			13.5 B			Ο.0	
Intersection Summary					_							
HCM 2000 Control Delay			10.9	11	CM 2000	Lovelof	Sorvico		В			
	acity ratio			Н	CIVI ZUUU	Level Of	Sei vice		D			
HCM 2000 Volume to Cap	acity fallo		0.29	C	um of los	t time (a)			0.0			
Actuated Cycle Length (s)	ation		60.0		um of los CU Level				9.0 B			
Intersection Capacity Utiliz	allUH		59.5%	IC	o Level (JI SELVICE	;		D			
Analysis Period (min)			15									
c Critical Lane Group												

O. VVCSt i Cacillice O	11001	<u> </u>	711001									<u> </u>
	ၨ	→	•	•	•	•	4	†	/	\	ļ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations					f)	7		4111				
Traffic Volume (vph)	0	0	0	0	111	212	69	1190	0	0	0	0
Future Volume (vph)	0	0	0	0	111	212	69	1190	0	0	0	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)					4.5	4.5		4.5				
Lane Util. Factor					0.95	0.95		0.86				
Frpb, ped/bikes					0.99	0.96		1.00				
Flpb, ped/bikes					1.00	1.00		0.99				
Frt					0.95	0.85		1.00				
Flt Protected					1.00	1.00		1.00				
Satd. Flow (prot)					1654	1445		6342				
Flt Permitted					1.00	1.00		1.00				
Satd. Flow (perm)					1654	1445		6342				
Peak-hour factor, PHF	0.92	0.92	0.92	0.84	0.84	0.84	0.88	0.88	0.88	0.92	0.92	0.92
Adj. Flow (vph)	0	0	0	0	132	252	78	1352	0	0	0	0
RTOR Reduction (vph)	0	0	0	0	20	20	0	4	0	0	0	0
Lane Group Flow (vph)	0	0	0	0	183	161	0	1426	0	0	0	0
Confl. Peds. (#/hr)				25		14	69		82			
Turn Type					NA	Perm	Perm	NA				
Protected Phases					8			2				
Permitted Phases						8	2					
Actuated Green, G (s)					19.3	19.3		91.7				
Effective Green, g (s)					19.3	19.3		91.7				
Actuated g/C Ratio					0.16	0.16		0.76				
Clearance Time (s)					4.5	4.5		4.5				
Vehicle Extension (s)					3.0	3.0		3.0				
Lane Grp Cap (vph)					266	232		4846				
v/s Ratio Prot					0.11							
v/s Ratio Perm						c0.11		0.22				
v/c Ratio					0.69	0.69		0.29				
Uniform Delay, d1					47.5	47.6		4.3				
Progression Factor					1.00	1.00		1.00				
Incremental Delay, d2					7.2	8.7		0.2				
Delay (s)					54.7	56.2		4.5				
Level of Service					D	Е		Α				
Approach Delay (s)		0.0			55.4			4.5			0.0	
Approach LOS		Α			Е			Α			Α	
Intersection Summary												
HCM 2000 Control Delay			15.2	Н	CM 2000	Level of	Service		В			
HCM 2000 Volume to Capacity	/ ratio		0.36									
Actuated Cycle Length (s)			120.0	S	um of los	t time (s)			9.0			
Intersection Capacity Utilization	n		38.1%	IC	CU Level	of Service	;		Α			
Analysis Period (min)			15									
c Critical Lane Group												

	۶	→	*	•	—	•	4	†	~	/	+	√
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	1>			4			4				
Traffic Volume (vph)	200	247	80	11	395	139	73	66	15	0	0	0
Future Volume (vph)	200	247	80	11	395	139	73	66	15	0	0	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	4.5	4.5			4.5			4.5				
Lane Util. Factor	1.00	1.00			1.00			1.00				
Frpb, ped/bikes	1.00	0.87			0.86			0.98				
Flpb, ped/bikes	0.82	1.00			0.99			0.97				
Frt	1.00	0.96			0.97			0.99				
Flt Protected	0.95	1.00			1.00			0.98				
Satd. Flow (prot)	1445	1556			1535			1714				
Flt Permitted	0.40	1.00			0.99			0.98				
Satd. Flow (perm)	611	1556			1524			1714				
Peak-hour factor, PHF	0.96	0.96	0.96	0.91	0.91	0.91	0.88	0.88	0.88	0.92	0.92	0.92
Adj. Flow (vph)	208	257	83	12	434	153	83	75	17	0	0	0
RTOR Reduction (vph)	0	19	0	0	21	0	0	0	0	0	0	0
Lane Group Flow (vph)	208	321	0	0	578	0	0	175	0	0	0	0
Confl. Peds. (#/hr)	396	021	409	409	070	396	38	170	90	, ,		
Heavy Vehicles (%)	2%	2%	2%	2%	2%	3%	2%	2%	2%	2%	2%	2%
Turn Type	Perm	NA	270	Perm	NA	070	Perm	NA	270	270	270	270
Protected Phases	I CIIII	4		I CIIII	8		I CIIII	2				
Permitted Phases	4	4		8	U		2					
Actuated Green, G (s)	33.5	33.5		U	33.5		2	17.5				
Effective Green, g (s)	33.5	33.5			33.5			17.5				
Actuated g/C Ratio	0.56	0.56			0.56			0.29				
Clearance Time (s)	4.5	4.5			4.5			4.5				
Vehicle Extension (s)	3.0	3.0			3.0			3.0				
- ' '												
Lane Grp Cap (vph)	341	868			850			499				
v/s Ratio Prot	0.24	0.21			-0.20			0.10				
v/s Ratio Perm	0.34	0.07			c0.38			0.10				
v/c Ratio	0.61	0.37			0.68			0.35				
Uniform Delay, d1	8.9	7.4			9.4			16.8				
Progression Factor	1.00	1.00			1.00			0.98				
Incremental Delay, d2	7.9	1.2			4.4			1.9				
Delay (s)	16.8	8.6			13.8			18.4				
Level of Service	В	Α			В			В				
Approach Delay (s)		11.7			13.8			18.4			0.0	
Approach LOS		В			В			В			Α	
Intersection Summary												
HCM 2000 Control Delay			13.5	Н	CM 2000	Level of	Service		В			
HCM 2000 Volume to Capac	city ratio		0.57									
Actuated Cycle Length (s)			60.0	S	um of los	t time (s)			9.0			
Intersection Capacity Utilizat	tion		78.6%		CU Level)		D			
Analysis Period (min)			15									
c Critical Lane Group												

	۶	→	•	•	←	•	4	†	~	/	↓	-√
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		₽			र्स						नाा	
Traffic Volume (vph)	0	21	8	9	22	0	0	0	0	320	1256	126
Future Volume (vph)	0	21	8	9	22	0	0	0	0	320	1256	126
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		5.3			5.3						4.4	
Lane Util. Factor		1.00			1.00						0.86	
Frpb, ped/bikes		1.00			1.00						1.00	
Flpb, ped/bikes		1.00			1.00						0.99	
Frt		0.96			1.00						0.99	
Flt Protected		1.00			0.99						0.99	
Satd. Flow (prot)		1795			1836						6236	
Flt Permitted		1.00			0.88						0.99	
Satd. Flow (perm)		1795			1645						6236	
Peak-hour factor, PHF	0.56	0.56	0.56	0.48	0.48	0.48	0.92	0.92	0.92	0.93	0.93	0.93
Adj. Flow (vph)	0	38	14	19	46	0	0	0	0	344	1351	135
RTOR Reduction (vph)	0	13	0	0	0	0	0	0	0	0	6	0
Lane Group Flow (vph)	0	39	0	0	65	0	0	0	0	0	1824	0
Confl. Peds. (#/hr)	74					74				10		
Turn Type		NA		Perm	NA					Perm	NA	
Protected Phases		8			4						2	
Permitted Phases				4						2		
Actuated Green, G (s)		9.5			9.5						100.8	
Effective Green, g (s)		9.5			9.5						100.8	
Actuated g/C Ratio		0.08			0.08						0.84	
Clearance Time (s)		5.3			5.3						4.4	
Vehicle Extension (s)		3.0			3.0						3.0	
Lane Grp Cap (vph)		142			130						5238	
v/s Ratio Prot		0.02			0.04						0.00	
v/s Ratio Perm		0.00			c0.04						0.29	
v/c Ratio		0.28			0.50						0.35	
Uniform Delay, d1		52.0			53.0						2.2	
Progression Factor		1.00			1.00						1.00	
Incremental Delay, d2		1.1			3.0						0.2	
Delay (s)		53.1			56.0						2.4	
Level of Service		D			E			0.0			Α	
Approach Delay (s) Approach LOS		53.1 D			56.0 E			0.0 A			2.4 A	
		D						^				
Intersection Summary				- 11	CN4 2000	1	Camilaa		Λ			
HCM 2000 Control Delay			5.5	H	CIVI 2000	Level of	Service		Α			
HCM 2000 Volume to Capac	ity ratio		0.36	C	um of los	t time (a)			0.7			
Actuated Cycle Length (s)	ion		120.0		um of los				9.7			
Intersection Capacity Utilizat	10[]		47.0%	IC	U Level (of Service	;		Α			
Analysis Period (min)			15									
c Critical Lane Group												

	•	•	•	†	ļ	4
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	ሻ			4111		
Traffic Volume (veh/h)	116	0	43	1301	0	0
Future Volume (Veh/h)	116	0	43	1301	0	0
Sign Control	Stop			Free	Free	
Grade	0%			0%	0%	
Peak Hour Factor	0.68	0.68	0.96	0.96	0.92	0.92
Hourly flow rate (vph)	171	0	45	1355	0	0
Pedestrians	53				2	
Lane Width (ft)	12.0				0.0	
Walking Speed (ft/s)	3.5				3.5	
Percent Blockage	5				0	
Right turn flare (veh)						
Median type				None	None	
Median storage veh)						
Upstream signal (ft)						
pX, platoon unblocked						
vC, conflicting volume	484	53	53			
vC1, stage 1 conf vol						
vC2, stage 2 conf vol						
vCu, unblocked vol	484	53	53			
tC, single (s)	6.8	6.9	4.1			
tC, 2 stage (s)						
tF (s)	3.5	3.3	2.2			
p0 queue free %	64	100	97			
cM capacity (veh/h)	471	953	1473			
Direction, Lane #	EB 1	NB 1	NB 2	NB 3	NB 4	
Volume Total	171	239	387	387	387	
Volume Left	171	45	0	0	0	
Volume Right	0	40	0	0	0	
cSH	471	1473	1700	1700	1700	
Volume to Capacity	0.36	0.03	0.23	0.23	0.23	
Queue Length 95th (ft)	41	0.03	0.23	0.23	0.23	
	16.9	1.6	0.0	0.0	0.0	
Control Delay (s)			0.0	0.0	U.U	
Lane LOS	C	A				
Approach LOS	16.9	0.3				
Approach LOS	С					
Intersection Summary						
Average Delay			2.1			
Intersection Capacity Utiliza	ation		32.6%	IC	CU Level o	of Service
Analysis Period (min)			15			

	۶	→	•	•	←	•	1	†	/	/	+	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations					1>	7		4ा।।				
Traffic Volume (veh/h)	0	0	0	0	124	80	283	1471	0	0	0	0
Future Volume (Veh/h)	0	0	0	0	124	80	283	1471	0	0	0	0
Sign Control		Stop			Stop			Free			Free	
Grade		0%			0%			0%			0%	
Peak Hour Factor	0.92	0.92	0.92	0.81	0.81	0.81	0.96	0.96	0.96	0.92	0.92	0.92
Hourly flow rate (vph)	0	0	0	0	153	99	295	1532	0	0	0	0
Pedestrians		52			59			11			11	
Lane Width (ft)		0.0			12.0			12.0			0.0	
Walking Speed (ft/s)		3.5			3.5			3.5			3.5	
Percent Blockage		0			6			1			0	
Right turn flare (veh)												
Median type								None			None	
Median storage veh)												
Upstream signal (ft)												
pX, platoon unblocked												
vC, conflicting volume	1212	2233	63	2192	2233	453	52			1591		
vC1, stage 1 conf vol												
vC2, stage 2 conf vol												
vCu, unblocked vol	1212	2233	63	2192	2233	453	52			1591		
tC, single (s)	7.5	6.5	6.9	7.5	6.5	6.9	4.1			4.1		
tC, 2 stage (s)												
tF (s)	3.5	4.0	3.3	3.5	4.0	3.3	2.2			2.2		
p0 queue free %	0	100	100	100	0	81	81			100		
cM capacity (veh/h)	0	32	978	19	32	523	1552			385		
Direction, Lane #	WB 1	WB 2	NB 1	NB 2	NB 3	NB 4						
Volume Total	186	66	514	438	438	438						
Volume Left	0	0	295	0	0	0						
Volume Right	33	66	0	0	0	0						
cSH	39	523	1552	1700	1700	1700						
Volume to Capacity	4.81	0.13	0.19	0.26	0.26	0.26						
Queue Length 95th (ft)	Err	11	18	0	0	0						
Control Delay (s)	Err	12.9	5.2	0.0	0.0	0.0						
Lane LOS	F	В	Α									
Approach Delay (s)	7383.6		1.5									
Approach LOS	F		.,,									
Intersection Summary												
Average Delay			896.3									
Intersection Capacity Utiliz	zation		42.2%	IC	U Level	of Service			Α			
Analysis Period (min)			15									

	•	→	•	•	←	•	1	†	<i>></i>	/	ţ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations			7	ሻ	र्स						4111	
Traffic Volume (veh/h)	0	0	58	119	187	0	0	0	0	0	1063	204
Future Volume (Veh/h)	0	0	58	119	187	0	0	0	0	0	1063	204
Sign Control		Stop			Stop			Free			Free	
Grade		0%			0%			0%			0%	
Peak Hour Factor	0.72	0.72	0.72	0.86	0.86	0.86	0.92	0.92	0.92	0.94	0.94	0.94
Hourly flow rate (vph)	0	0	81	138	217	0	0	0	0	0	1131	217
Pedestrians		14			16			7			15	
Lane Width (ft)		12.0			12.0			0.0			12.0	
Walking Speed (ft/s)		3.5			3.5			3.5			3.5	
Percent Blockage		1			2			0			1	
Right turn flare (veh)												
Median type								None			None	
Median storage veh)												
Upstream signal (ft)											288	
pX, platoon unblocked	0.97	0.97	0.97	0.97	0.97		0.97					
vC, conflicting volume	1377	1270	412	387	1378	31	1362			16		
vC1, stage 1 conf vol												
vC2, stage 2 conf vol												
vCu, unblocked vol	1216	1104	217	191	1217	31	1200			16		
tC, single (s)	7.5	6.5	6.9	7.5	6.5	6.9	4.1			4.1		
tC, 2 stage (s)												
tF (s)	3.5	4.0	3.3	3.5	4.0	3.3	2.2			2.2		
p0 queue free %	0	100	89	78	0	100	100			100		
cM capacity (veh/h)	0	197	751	624	169	1006	550			1576		
Direction, Lane #	EB 1	WB 1	WB 2	SB 1	SB 2	SB 3	SB 4					
Volume Total	81	92	263	323	323	323	379					
Volume Left	0	92	46	0	0	0	0					
Volume Right	81	0	0	0	0	0	217					
cSH	751	624	193	1700	1700	1700	1700					
Volume to Capacity	0.11	0.15	1.36	0.19	0.19	0.19	0.22					
Queue Length 95th (ft)	9	13	380	0	0	0	0					
Control Delay (s)	10.4	11.8	238.9	0.0	0.0	0.0	0.0					
Lane LOS	В	В	F									
Approach Delay (s)	10.4	180.0		0.0								
Approach LOS	В	F										
Intersection Summary												
Average Delay			36.3									
Intersection Capacity Utiliza	ation		46.5%	IC	U Level	of Service			Α			
Analysis Period (min)			15									

	٠	→	←	4	-	1	
Movement	EBL	EBT	WBT	WBR	SBL	SBR	
Lane Configurations		ર્ન	∱-		W		
Traffic Volume (veh/h)	0	80	94	186	19	7	
Future Volume (Veh/h)	0	80	94	186	19	7	
Sign Control		Free	Free		Stop		
Grade		0%	0%		0%		
Peak Hour Factor	0.89	0.89	0.91	0.91	0.50	0.50	
Hourly flow rate (vph)	0	90	103	204	38	14	
Pedestrians		1	1		3		
Lane Width (ft)		12.0	12.0		12.0		
Walking Speed (ft/s)		3.5	3.5		3.5		
Percent Blockage		0	0		0		
Right turn flare (veh)							
Median type		None	None				
Median storage veh)							
Upstream signal (ft)							
pX, platoon unblocked							
vC, conflicting volume	310				299	209	
vC1, stage 1 conf vol							
vC2, stage 2 conf vol							
vCu, unblocked vol	310				299	209	
tC, single (s)	4.1				6.4	6.2	
tC, 2 stage (s)							
tF (s)	2.2				3.5	3.3	
p0 queue free %	100				94	98	
cM capacity (veh/h)	1247				690	828	
Direction, Lane #	EB 1	WB 1	SB 1				
Volume Total	90	307	52				
Volume Left	0	0	38				
Volume Right	0	204	14				
cSH	1247	1700	722				
Volume to Capacity	0.00	0.18	0.07				
Queue Length 95th (ft)	0.00	0.10	6				
Control Delay (s)	0.0	0.0	10.4				
Lane LOS	0.0	0.0	В				
Approach Delay (s)	0.0	0.0	10.4				
Approach LOS	0.0	0.0	В				
• •			D				
Intersection Summary							
Average Delay			1.2				
Intersection Capacity Utiliz	ation		26.9%	IC	U Level o	of Service	
Analysis Period (min)			15				

	•	•	†	~	>	↓
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	¥		f)			4
Traffic Volume (veh/h)	1	29	82	19	29	73
Future Volume (Veh/h)	1	29	82	19	29	73
Sign Control	Stop		Free			Free
Grade	0%		0%			0%
Peak Hour Factor	0.70	0.70	0.91	0.91	0.82	0.82
Hourly flow rate (vph)	1	41	90	21	35	89
Pedestrians	3					
Lane Width (ft)	12.0					
Walking Speed (ft/s)	3.5					
Percent Blockage	0					
Right turn flare (veh)						
Median type			None			None
Median storage veh)						
Upstream signal (ft)						
pX, platoon unblocked						
vC, conflicting volume	262	104			114	
vC1, stage 1 conf vol						
vC2, stage 2 conf vol						
vCu, unblocked vol	262	104			114	
tC, single (s)	6.4	6.2			4.1	
tC, 2 stage (s)						
tF (s)	3.5	3.3			2.2	
p0 queue free %	100	96			98	
cM capacity (veh/h)	707	949			1471	
Direction, Lane #	WB 1	NB 1	SB 1			
Volume Total	42	111	124			
Volume Left	1	0	35			
Volume Right	41	21	0			
cSH	941	1700	1471			
Volume to Capacity	0.04	0.07	0.02			
Queue Length 95th (ft)	3	0	2			
Control Delay (s)	9.0	0.0	2.3			
Lane LOS	Α	0.0	Α			
Approach Delay (s)	9.0	0.0	2.3			
Approach LOS	A	0.0	2.0			
Intersection Summary						
Average Delay			2.4			
Intersection Capacity Utiliz	zation		22.1%	IC	HLovola	of Service
Analysis Doried (min)	zaliuli			IC	O LEVEL	JI SEIVICE
Analysis Period (min)			15			

	۶	→	•	•	←	•	1	†	/	/	ţ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	£			4			4				
Traffic Volume (veh/h)	85	142	86	11	195	89	53	44	21	0	0	0
Future Volume (Veh/h)	85	142	86	11	195	89	53	44	21	0	0	0
Sign Control		Free			Free			Stop			Stop	
Grade		0%			0%			0%			0%	
Peak Hour Factor	0.77	0.77	0.77	0.90	0.90	0.90	0.85	0.85	0.85	0.92	0.92	0.92
Hourly flow rate (vph)	110	184	112	12	217	99	62	52	25	0	0	0
Pedestrians		9			30			131			134	
Lane Width (ft)		12.0			12.0			12.0			0.0	
Walking Speed (ft/s)		3.5			3.5			3.5			3.5	
Percent Blockage		1			3			12			0	
Right turn flare (veh)												
Median type		None			None							
Median storage veh)												
Upstream signal (ft)												
pX, platoon unblocked												
vC, conflicting volume	450			427			890	1065	401	910	1072	410
vC1, stage 1 conf vol												
vC2, stage 2 conf vol												
vCu, unblocked vol	450			427			890	1065	401	910	1072	410
tC, single (s)	4.1			4.1			7.1	6.5	6.2	7.1	6.5	6.2
tC, 2 stage (s)												
tF (s)	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free %	90			99			67	70	95	100	100	100
cM capacity (veh/h)	1110			991			190	173	552	153	172	636
Direction, Lane #	EB 1	EB 2	WB 1	NB 1								
Volume Total	110	296	328	139								
Volume Left	110	0	12	62								
Volume Right	0	112	99	25								
cSH	1110	1700	991	207								
Volume to Capacity	0.10	0.17	0.01	0.67								
Queue Length 95th (ft)	8	0	1	103								
Control Delay (s)	8.6	0.0	0.4	52.1								
Lane LOS	А		Α	F								
Approach Delay (s)	2.3		0.4	52.1								
Approach LOS				F								
Intersection Summary												
Average Delay			9.6									
Intersection Capacity Utiliz	ation		54.6%	IC	CU Level	of Service			Α			
Analysis Period (min)			15									

	→	•	•	—	•	~	
Movement	EBT	EBR	WBL	WBT	NBL	NBR	
Lane Configurations	1			र्स	¥		
Traffic Volume (veh/h)	74	259	13	29	2	42	
Future Volume (Veh/h)	74	259	13	29	2	42	
Sign Control	Free	207		Free	Stop		
Grade	0%			0%	0%		
Peak Hour Factor	0.68	0.68	0.48	0.48	0.92	0.92	
Hourly flow rate (vph)	109	381	27	60	2	46	
Pedestrians	107	001	_,	00		10	
Lane Width (ft)							
Walking Speed (ft/s)							
Percent Blockage							
Right turn flare (veh)							
Median type	None			None			
Median storage veh)	110110			110110			
Upstream signal (ft)	236						
pX, platoon unblocked	200		1.00		1.00	1.00	
vC, conflicting volume			490		414	300	
vC1, stage 1 conf vol			170			000	
vC2, stage 2 conf vol							
vCu, unblocked vol			490		413	299	
tC, single (s)			4.1		6.4	6.2	
tC, 2 stage (s)					0. 1	0.2	
tF (s)			2.2		3.5	3.3	
p0 queue free %			97		100	94	
cM capacity (veh/h)			1073		580	740	
	ED 1	WD 1				,	
Direction, Lane #	EB 1	WB 1	NB 1				
Volume Total	490	87	48				
Volume Left	0	27	2				
Volume Right	381	0	46				
cSH	1700	1073	732				
Volume to Capacity	0.29	0.03	0.07				
Queue Length 95th (ft)	0	2	5				
Control Delay (s)	0.0	2.8	10.3				
Lane LOS		Α	В				
Approach Delay (s)	0.0	2.8	10.3				
Approach LOS			В				
Intersection Summary							
Average Delay			1.2				
Intersection Capacity Utiliza	ition		29.8%	IC	U Level o	of Service	
Analysis Period (min)			15				

	•	→	←	4	-	4
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations			∱ }			7
Traffic Volume (veh/h)	0	0	280	112	0	28
Future Volume (Veh/h)	0	0	280	112	0	28
Sign Control		Free	Free		Stop	
Grade		0%	0%		0%	
Peak Hour Factor	0.92	0.92	0.86	0.86	0.92	0.92
Hourly flow rate (vph)	0	0	326	130	0	30
Pedestrians						
Lane Width (ft)						
Walking Speed (ft/s)						
Percent Blockage						
Right turn flare (veh)						
Median type		None	None			
Median storage veh)						
Upstream signal (ft)						
pX, platoon unblocked						
vC, conflicting volume	456				391	228
vC1, stage 1 conf vol						
vC2, stage 2 conf vol						
vCu, unblocked vol	456				391	228
tC, single (s)	4.1				6.8	6.9
tC, 2 stage (s)						
tF (s)	2.2				3.5	3.3
p0 queue free %	100				100	96
cM capacity (veh/h)	1101				585	775
Direction, Lane #	WB 1	WB 2	SB 1			
Volume Total	217	239	30			
Volume Left	0	0	0			
Volume Right	0	130	30			
cSH	1700	1700	775			
	0.13	0.14	0.04			
Volume to Capacity						
Queue Length 95th (ft)	0	0	3			
Control Delay (s)	0.0	0.0	9.8			
Lane LOS	0.0		A			
Approach LOS	0.0		9.8			
Approach LOS			Α			
Intersection Summary						
Average Delay			0.6			
Intersection Capacity Utiliz	ation		21.3%	IC	U Level o	of Service
Analysis Period (min)			15			

	۶	→	•	•	—	•	•	†	~	\	↓	✓
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		f)			र्स						नांकि	
Traffic Volume (vph)	0	144	34	36	32	0	0	0	0	147	1244	121
Future Volume (vph)	0	144	34	36	32	0	0	0	0	147	1244	121
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		5.3			5.3						4.4	
Lane Util. Factor		1.00			1.00						0.86	
Frpb, ped/bikes		1.00			1.00						1.00	
Flpb, ped/bikes		1.00			1.00						0.99	
Frt		0.97			1.00						0.99	
Flt Protected		1.00			0.97						1.00	
Satd. Flow (prot)		1810			1814						6253	
Flt Permitted		1.00			0.44						1.00	
Satd. Flow (perm)		1810			812						6253	
Peak-hour factor, PHF	0.69	0.69	0.69	0.81	0.81	0.81	0.92	0.92	0.92	0.87	0.87	0.87
Adj. Flow (vph)	0	209	49	44	40	0	0	0	0	169	1430	139
RTOR Reduction (vph)	0	8	0	0	0	0	0	0	0	0	8	0
Lane Group Flow (vph)	0	250	0	0	84	0	0	0	0	0	1730	0
Confl. Peds. (#/hr)	199		1	1		199				22		
Turn Type		NA		Perm	NA					Perm	NA	
Protected Phases		8			4						2	
Permitted Phases				4						2		
Actuated Green, G (s)		21.8			21.8						88.5	
Effective Green, g (s)		21.8			21.8						88.5	
Actuated g/C Ratio		0.18			0.18						0.74	
Clearance Time (s)		5.3			5.3						4.4	
Vehicle Extension (s)		3.0			3.0						3.0	
Lane Grp Cap (vph)		328			147						4611	
v/s Ratio Prot		c0.14										
v/s Ratio Perm					0.10						0.28	
v/c Ratio		0.76			0.57						0.38	
Uniform Delay, d1		46.6			44.8						5.7	
Progression Factor		1.00			1.00						1.00	
Incremental Delay, d2		10.0			5.3						0.2	
Delay (s)		56.6			50.1						5.9	
Level of Service		E			D						A	
Approach Delay (s)		56.6			50.1			0.0			5.9	
Approach LOS		E			D			А			Α	
Intersection Summary												
HCM 2000 Control Delay			14.0	Н	CM 2000	Level of S	Service		В			
HCM 2000 Volume to Capacity	y ratio		0.45									
Actuated Cycle Length (s)			120.0		um of los				9.7			
Intersection Capacity Utilizatio	n		58.8%	IC	CU Level	of Service	!		В			
Analysis Period (min)			15									
c Critical Lane Group												

	۶	•	4	†	ļ	4
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	ሻ			4111		
Traffic Volume (veh/h)	397	0	61	1416	0	0
Future Volume (Veh/h)	397	0	61	1416	0	0
Sign Control	Stop			Free	Free	
Grade	0%			0%	0%	
Peak Hour Factor	0.88	0.88	0.90	0.90	0.92	0.92
Hourly flow rate (vph)	451	0	68	1573	0	0
Pedestrians	75			1		
Lane Width (ft)	12.0			12.0		
Walking Speed (ft/s)	3.5			3.5		
Percent Blockage	7			0		
Right turn flare (veh)						
Median type				None	None	
Median storage veh)						
Upstream signal (ft)						
pX, platoon unblocked						
vC, conflicting volume	604	76	75			
vC1, stage 1 conf vol						
vC2, stage 2 conf vol						
vCu, unblocked vol	604	76	75			
tC, single (s)	6.8	6.9	4.1			
tC, 2 stage (s)						
tF (s)	3.5	3.3	2.2			
p0 queue free %	0	100	95			
cM capacity (veh/h)	380	900	1414			
Direction, Lane #	EB 1	NB 1	NB 2	NB 3	NB 4	
Volume Total	451	293	449	449	449	
Volume Left	451	68	0	0	0	
Volume Right	0	0	0	0	0	
cSH	380	1414	1700	1700	1700	
Volume to Capacity	1.19	0.05	0.26	0.26	0.26	
Queue Length 95th (ft)	455	4	0	0	0	
Control Delay (s)	139.4	2.1	0.0	0.0	0.0	
Lane LOS	F	Α				
Approach Delay (s)	139.4	0.4				
Approach LOS	F					
Intersection Summary						
Average Delay			30.3			
Intersection Capacity Utiliz	zation		50.1%	IC	CU Level c	f Service
Analysis Period (min)			15			

	۶	→	•	•	+	•	1	†	/	/	↓	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations					₽	7		ना				
Traffic Volume (veh/h)	0	0	0	0	127	215	129	1207	0	0	0	0
Future Volume (Veh/h)	0	0	0	0	127	215	129	1207	0	0	0	0
Sign Control		Stop			Stop			Free			Free	
Grade		0%			0%			0%			0%	
Peak Hour Factor	0.92	0.92	0.92	0.84	0.84	0.84	0.88	0.88	0.88	0.92	0.92	0.92
Hourly flow rate (vph)	0	0	0	0	151	256	147	1372	0	0	0	0
Pedestrians		69			82			25			14	
Lane Width (ft)		0.0			12.0			12.0			0.0	
Walking Speed (ft/s)		3.5			3.5			3.5			3.5	
Percent Blockage		0			8			2			0	
Right turn flare (veh)												
Median type								None			None	
Median storage veh)												
Upstream signal (ft)												
pX, platoon unblocked												
vC, conflicting volume	1052	1817	94	1773	1817	439	69			1454		
vC1, stage 1 conf vol												
vC2, stage 2 conf vol												
vCu, unblocked vol	1052	1817	94	1773	1817	439	69			1454		
tC, single (s)	7.5	6.5	6.9	7.5	6.5	6.9	4.1			4.1		
tC, 2 stage (s)												
tF (s)	3.5	4.0	3.3	3.5	4.0	3.3	2.2			2.2		
p0 queue free %	0	100	100	100	0	51	90			100		
cM capacity (veh/h)	0	64	922	41	64	522	1530			425		
Direction, Lane #	WB 1	WB 2	NB 1	NB 2	NB 3	NB 4						
Volume Total	236	171	343	392	392	392						
Volume Left	0	0	147	0	0	0						
Volume Right	85	171	0	0	0	0						
cSH	94	522	1530	1700	1700	1700						
Volume to Capacity	2.51	0.33	0.10	0.23	0.23	0.23						
Queue Length 95th (ft)	546	35	8	0	0	0						
Control Delay (s)	783.2	15.2	3.7	0.0	0.0	0.0						
Lane LOS	F	С	Α									
Approach Delay (s)	461.2		0.8									
Approach LOS	F											
Intersection Summary												
Average Delay			98.1									
Intersection Capacity Utiliza	ition		38.3%	IC	CU Level	of Service			Α			
Analysis Period (min)			15									

	•	→	•	•	+	•	1	†	<i>></i>	/		4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations			7	ሻ	र्स						4111	
Traffic Volume (veh/h)	0	0	227	244	110	0	0	0	0	0	1277	99
Future Volume (Veh/h)	0	0	227	244	110	0	0	0	0	0	1277	99
Sign Control		Stop			Stop			Free			Free	
Grade		0%			0%			0%			0%	
Peak Hour Factor	0.80	0.80	0.80	0.72	0.72	0.72	0.92	0.92	0.92	0.84	0.84	0.84
Hourly flow rate (vph)	0	0	284	339	153	0	0	0	0	0	1520	118
Pedestrians		22			32			7			26	
Lane Width (ft)		12.0			12.0			0.0			12.0	
Walking Speed (ft/s)		3.5			3.5			3.5			3.5	
Percent Blockage		2			3			0			2	
Right turn flare (veh)												
Median type								None			None	
Median storage veh)												
Upstream signal (ft)												
pX, platoon unblocked												
vC, conflicting volume	1704	1633	468	703	1692	58	1660			32		
vC1, stage 1 conf vol												
vC2, stage 2 conf vol												
vCu, unblocked vol	1704	1633	468	703	1692	58	1660			32		
tC, single (s)	7.5	6.5	6.9	7.5	6.5	6.9	4.1			4.1		
tC, 2 stage (s)												
tF (s)	3.5	4.0	3.3	3.5	4.0	3.3	2.2			2.2		
p0 queue free %	0	100	46	0	0	100	100			100		
cM capacity (veh/h)	0	95	530	140	87	942	376			1530		
Direction, Lane #	EB 1	WB 1	WB 2	SB 1	SB 2	SB 3	SB 4					
Volume Total	284	226	266	434	434	434	335					
Volume Left	0	226	113	0	0	0	0					
Volume Right	284	0	0	0	0	0	118					
cSH	530	140	104	1700	1700	1700	1700					
Volume to Capacity	0.54	1.61	2.55	0.26	0.26	0.26	0.20					
Queue Length 95th (ft)	78	400	608	0	0	0	0					
Control Delay (s)	19.3	361.2	791.4	0.0	0.0	0.0	0.0					
Lane LOS	С	F	F									
Approach Delay (s)	19.3	593.8		0.0								
Approach LOS	С	F										
Intersection Summary												
Average Delay			123.3									
Intersection Capacity Utiliza	ation		56.9%	IC	U Level	of Service			В			
Analysis Period (min)			15									

	•	→	←	•	\	4	
Movement	EBL	EBT	WBT	WBR	SBL	SBR	
Lane Configurations		4	ĵ.		*/f		
Traffic Volume (veh/h)	0	85	117	76	194	129	
Future Volume (Veh/h)	0	85	117	76	194	129	
Sign Control		Free	Free		Stop		
Grade		0%	0%		0%		
Peak Hour Factor	0.74	0.74	0.79	0.79	0.88	0.88	
Hourly flow rate (vph)	0	115	148	96	220	147	
Pedestrians		6			4		
Lane Width (ft)		12.0			12.0		
Walking Speed (ft/s)		3.5			3.5		
Percent Blockage		1			0		
Right turn flare (veh)							
Median type		None	None				
Median storage veh)							
Upstream signal (ft)							
pX, platoon unblocked							
vC, conflicting volume	248				315	206	
vC1, stage 1 conf vol							
vC2, stage 2 conf vol							
vCu, unblocked vol	248				315	206	
tC, single (s)	4.1				6.4	6.2	
tC, 2 stage (s)							
tF (s)	2.2				3.5	3.3	
p0 queue free %	100				67	82	
cM capacity (veh/h)	1313				675	827	
Direction, Lane #	EB 1	WB 1	SB 1				
Volume Total	115	244	367				
Volume Left	0	0	220				
Volume Right	0	96	147				
cSH	1313	1700	729				
Volume to Capacity	0.00	0.14	0.50				
Queue Length 95th (ft)	0.00	0.14	72				
Control Delay (s)	0.0	0.0	14.8				
Lane LOS	0.0	0.0	14.0 B				
Approach Delay (s)	0.0	0.0	14.8				
Approach LOS	0.0	0.0	14.0 B				
			D				
Intersection Summary							
Average Delay			7.5				
Intersection Capacity Utiliz	ation		36.8%	IC	U Level o	of Service	
Analysis Period (min)			15				

	•	•	†	/	>	↓		
Movement	WBL	WBR	NBT	NBR	SBL	SBT		
Lane Configurations	W		₽			र्स		
Traffic Volume (veh/h)	6	86	200	13	17	73		
Future Volume (Veh/h)	6	86	200	13	17	73		
Sign Control	Stop		Free			Free		
Grade	0%		0%			0%		
Peak Hour Factor	0.55	0.55	0.88	0.88	0.84	0.84		
Hourly flow rate (vph)	11	156	227	15	20	87		
Pedestrians	10							
Lane Width (ft)	12.0							
Walking Speed (ft/s)	3.5							
Percent Blockage	1							
Right turn flare (veh)								
Median type			None			None		
Median storage veh)								
Upstream signal (ft)								
pX, platoon unblocked								
vC, conflicting volume	372	244			252			
vC1, stage 1 conf vol	0.2							
vC2, stage 2 conf vol								
vCu, unblocked vol	372	244			252			
tC, single (s)	6.4	6.2			4.1			
tC, 2 stage (s)	0.1	0.2						
tF (s)	3.5	3.3			2.2			
p0 queue free %	98	80			98			
cM capacity (veh/h)	614	787			1301			
· · ·			CD 1		1001			
Direction, Lane #	WB 1	NB 1	SB 1					
Volume Total Volume Left	167 11	242	107 20					
		0 15						
Volume Right	156 772	1700	0 1301					
CSH Volume to Canacity								
Volume to Capacity	0.22	0.14	0.02					
Queue Length 95th (ft)	20	0	1					
Control Delay (s)	10.9	0.0	1.6					
Lane LOS	B	0.0	A					
Approach Delay (s)	10.9	0.0	1.6					
Approach LOS	В							
Intersection Summary								
Average Delay			3.9					
Intersection Capacity Utiliza	ation		30.8%	IC	U Level o	of Service	A	
Analysis Period (min)			15					

	٠	→	•	•	•	•	•	†	/	>	↓	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	f)			4			4				
Traffic Volume (veh/h)	200	250	85	11	401	139	85	115	76	0	0	0
Future Volume (Veh/h)	200	250	85	11	401	139	85	115	76	0	0	0
Sign Control		Free			Free			Stop			Stop	
Grade		0%			0%			0%			0%	
Peak Hour Factor	0.96	0.96	0.96	0.91	0.91	0.91	0.88	0.88	0.88	0.92	0.92	0.92
Hourly flow rate (vph)	208	260	89	12	441	153	97	131	86	0	0	0
Pedestrians		38			90			409			396	
Lane Width (ft)		12.0			12.0			12.0			0.0	
Walking Speed (ft/s)		3.5			3.5			3.5			3.5	
Percent Blockage		4			9			39			0	
Right turn flare (veh)												
Median type		None			None							
Median storage veh)												
Upstream signal (ft)												
pX, platoon unblocked												
vC, conflicting volume	990			758			1709	2144	804	1855	2112	952
vC1, stage 1 conf vol												
vC2, stage 2 conf vol												
vCu, unblocked vol	990			758			1709	2144	804	1855	2112	952
tC, single (s)	4.1			4.1			7.1	6.5	6.2	7.1	6.5	6.2
tC, 2 stage (s)												
tF (s)	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free %	70			98			0	0	60	0	100	100
cM capacity (veh/h)	698			521			23	20	214	0	21	303
Direction, Lane #	EB 1	EB 2	WB 1	NB 1								
Volume Total	208	349	606	314								
Volume Left	208	0	12	97								
Volume Right	0	89	153	86								
cSH	698	1700	521	28								
Volume to Capacity	0.30	0.21	0.02	11.11								
Queue Length 95th (ft)	31	0	2	Err								
Control Delay (s)	12.3	0.0	0.7	Err								
Lane LOS	В		А	F								
Approach Delay (s)	4.6		0.7	Err								
Approach LOS				F								
Intersection Summary												
Average Delay			2127.7									
Intersection Capacity Utiliza	ation		80.2%	IC	CU Level	of Service			D			
Analysis Period (min)			15									

	-	•	•	•	4	/	
Movement	EBT	EBR	WBL	WBT	NBL	NBR	
Lane Configurations	1			4	W		
Traffic Volume (veh/h)	186	107	5	56	12	210	
Future Volume (Veh/h)	186	107	5	56	12	210	
Sign Control	Free			Free	Stop	2.0	
Grade	0%			0%	0%		
Peak Hour Factor	0.68	0.68	0.48	0.48	0.92	0.92	
Hourly flow rate (vph)	274	157	10	117	13	228	
Pedestrians	_, .	107				LLU	
Lane Width (ft)							
Walking Speed (ft/s)							
Percent Blockage							
Right turn flare (veh)							
Median type	None			None			
Median storage veh)	INOTIC			140110			
Upstream signal (ft)	236						
pX, platoon unblocked	230		0.88		0.88	0.88	
vC, conflicting volume			431		490	352	
vC1, stage 1 conf vol			731		470	332	
vC2, stage 2 conf vol							
vCu, unblocked vol			281		348	192	
tC, single (s)			4.1		6.4	6.2	
tC, 2 stage (s)			7.1		0.4	0.2	
tF (s)			2.2		3.5	3.3	
p0 queue free %			99		98	69	
cM capacity (veh/h)			1124		564	746	
					304	740	
Direction, Lane #	EB 1	WB 1	NB 1				
Volume Total	431	127	241				
Volume Left	0	10	13				
Volume Right	157	0	228				
cSH	1700	1124	733				
Volume to Capacity	0.25	0.01	0.33				
Queue Length 95th (ft)	0	1	36				
Control Delay (s)	0.0	0.7	12.3				
Lane LOS		Α	В				
Approach Delay (s)	0.0	0.7	12.3				
Approach LOS			В				
Intersection Summary							
Average Delay			3.8				
Intersection Capacity Utiliz	zation		36.6%	IC	יון בעבו נ	of Service	
Analysis Period (min)	-ation		15	10	O LEVEL	J JUI VICE	
Analysis Penou (IIIIII)			10				

	•	→	←	•	\	4
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations			↑ ↑			7
Traffic Volume (veh/h)	0	0	218	46	0	136
Future Volume (Veh/h)	0	0	218	46	0	136
Sign Control		Free	Free		Stop	
Grade		0%	0%		0%	
Peak Hour Factor	0.92	0.92	0.72	0.72	0.92	0.92
Hourly flow rate (vph)	0	0	303	64	0	148
Pedestrians						
Lane Width (ft)						
Walking Speed (ft/s)						
Percent Blockage						
Right turn flare (veh)						
Median type		None	None			
Median storage veh)						
Upstream signal (ft)						
pX, platoon unblocked						
vC, conflicting volume	367				335	184
vC1, stage 1 conf vol	007				000	101
vC2, stage 2 conf vol						
vCu, unblocked vol	367				335	184
tC, single (s)	4.1				6.8	6.9
tC, 2 stage (s)	7.1				0.0	0.7
tF (s)	2.2				3.5	3.3
p0 queue free %	100				100	82
cM capacity (veh/h)	1188				635	827
					033	021
Direction, Lane #	WB 1	WB 2	SB 1			
Volume Total	202	165	148			
Volume Left	0	0	0			
Volume Right	0	64	148			
cSH	1700	1700	827			
Volume to Capacity	0.12	0.10	0.18			
Queue Length 95th (ft)	0	0	16			
Control Delay (s)	0.0	0.0	10.3			
Lane LOS			В			
Approach Delay (s)	0.0		10.3			
Approach LOS			В			
Intersection Summary						
Average Delay			3.0			
Intersection Capacity Utilizat	ion		22.6%	IC	III evel d	of Service
Analysis Period (min)			15	10	O LOVOI C	3011100

	<u> </u>	→	*	•	+	•	1	†	<i>></i>	>	†	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations					f)	7		4111				
Traffic Volume (vph)	0	0	0	0	124	80	283	1471	0	0	0	0
Future Volume (vph)	0	0	0	0	124	80	283	1471	0	0	0	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)					4.5	4.5		4.5				
Lane Util. Factor					0.95	0.95		0.86				
Frpb, ped/bikes					1.00	0.97		1.00				
Flpb, ped/bikes					1.00	1.00		0.98				
Frt					0.99	0.85		1.00				
Flt Protected					1.00	1.00		0.99				
Satd. Flow (prot)					1750	1454		6250				
Flt Permitted					1.00	1.00		0.99				
Satd. Flow (perm)					1750	1454		6250				
Peak-hour factor, PHF	0.92	0.92	0.92	0.81	0.81	0.81	0.96	0.96	0.96	0.92	0.92	0.92
Adj. Flow (vph)	0	0.72	0	0	153	99	295	1532	0	0	0	0.72
RTOR Reduction (vph)	0	0	0	0	3	27	0	17	0	0	0	0
Lane Group Flow (vph)	0	0	0	0	160	62	0	1810	0	0	0	0
Confl. Peds. (#/hr)	Ū			11	100	11	52	1010	59			J
Turn Type				- ' '	NA	Perm	Perm	NA	- 07			
Protected Phases					8	1 CIIII	1 CIIII	2				
Permitted Phases					U	8	2					
Actuated Green, G (s)					16.4	16.4		94.6				
Effective Green, g (s)					16.4	16.4		94.6				
Actuated g/C Ratio					0.14	0.14		0.79				
Clearance Time (s)					4.5	4.5		4.5				
Vehicle Extension (s)					3.0	3.0		3.0				
Lane Grp Cap (vph)					239	198		4927				
v/s Ratio Prot					c0.09	170		4727				
v/s Ratio Prot v/s Ratio Perm					CU.U7	0.04		0.29				
v/c Ratio					0.67	0.04		0.27				
Uniform Delay, d1					49.2	46.7		3.8				
Progression Factor					1.00	1.00		1.00				
Incremental Delay, d2					7.2	0.9		0.2				
Delay (s)					56.4	47.6		4.0				
Level of Service					50.4 E	47.0 D						
Approach Delay (s)		0.0			53.3	D		A 4.0			0.0	
Approach LOS		Α			55.5 D			4.0 A			Α	
Intersection Summary					_							
			10.0	11	CM 2000	Lovelof	Sorvico		A			
HCM 2000 Control Delay	v ratio			Н	CIVI 2000	Level of	service		А			
HCM 2000 Volume to Capacit	y Tallo		0.41	C	um of los	t time (a)			0.0			
Actuated Cycle Length (s)	n .		120.0			t time (s)			9.0			
Intersection Capacity Utilizatio	ш		43.5%	IC	o rever	of Service	;		Α			
Analysis Period (min)			15									
c Critical Lane Group												

	۶	→	•	•	←	4	1	†	<i>></i>	/	Ţ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations			7	ሻ	र्स						4†††	
Traffic Volume (vph)	0	0	58	119	187	0	0	0	0	0	1063	204
Future Volume (vph)	0	0	58	119	187	0	0	0	0	0	1063	204
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)			4.5	4.5	4.5						4.5	
Lane Util. Factor			1.00	0.95	0.95						0.86	
Frpb, ped/bikes			0.97	1.00	1.00						0.99	
Flpb, ped/bikes			1.00	0.99	1.00						1.00	
Frt			0.86	1.00	1.00						0.98	
Flt Protected			1.00	0.95	1.00						1.00	
Satd. Flow (prot)			1570	1658	1763						6187	
Flt Permitted			1.00	0.95	1.00						1.00	
Satd. Flow (perm)			1570	1658	1763						6187	
Peak-hour factor, PHF	0.72	0.72	0.72	0.86	0.86	0.86	0.92	0.92	0.92	0.94	0.94	0.94
Adj. Flow (vph)	0	0	81	138	217	0	0	0	0	0	1131	217
RTOR Reduction (vph)	0	0	46	46	12	0	0	0	0	0	15	0
Lane Group Flow (vph)	0	0	35	78	219	0	0	0	0	0	1333	0
Confl. Peds. (#/hr)	15		7	7		15				16		14
Turn Type			Perm	Perm	NA						NA	
Protected Phases				•	8						2	
Permitted Phases			4	8	20.7						00.0	
Actuated Green, G (s)			20.7	20.7	20.7						90.3	
Effective Green, g (s)			20.7	20.7	20.7						90.3	
Actuated g/C Ratio			0.17 4.5	0.17	0.17						0.75 4.5	
Clearance Time (s) Vehicle Extension (s)			3.0	4.5 3.0	4.5 3.0						3.0	
			270		304						4655	
Lane Grp Cap (vph)			270	286	304							
v/s Ratio Prot v/s Ratio Perm			0.02	0.05	0.12						c0.22	
v/c Ratio			0.02	0.03	0.12						0.29	
Uniform Delay, d1			42.0	43.1	46.9						4.7	
Progression Factor			1.10	1.54	1.29						0.97	
Incremental Delay, d2			0.2	0.5	7.9						0.77	
Delay (s)			46.4	66.8	68.4						4.7	
Level of Service			TO.4	E	E						Α.	
Approach Delay (s)		46.4			67.9			0.0			4.7	
Approach LOS		D			E			A			A	
Intersection Summary												
HCM 2000 Control Delay			19.2	H	CM 2000	Level of	Service		В			
HCM 2000 Volume to Capac	city ratio		0.37									
Actuated Cycle Length (s)			120.0	Sı	um of los	t time (s)			9.0			
Intersection Capacity Utilizat	tion		48.7%	IC	U Level	of Service)		Α			
Analysis Period (min)			15									
c Critical Lane Group												

Lane Configurations Traffic Volume (yph) 85 142 86 11 195 89 53 44 21 0 0 0 0 0 100 1000 1900 1900 1900 19		•	→	•	•	←	•	4	†	~	/		4
Traffic Volume (vph)	Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Future Volume (vph)	Lane Configurations	ħ	f)			44			44				
Ideal Flow (vphpl) 1900 <td>Traffic Volume (vph)</td> <td>85</td> <td>142</td> <td>86</td> <td>11</td> <td>195</td> <td>89</td> <td>53</td> <td>44</td> <td>21</td> <td>0</td> <td>0</td> <td>0</td>	Traffic Volume (vph)	85	142	86	11	195	89	53	44	21	0	0	0
Total Lost lime (s)	Future Volume (vph)	85	142	86	11	195	89	53	44	21	0	0	0
Lane Util. Factor	Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Frpb. pedrbikes	Total Lost time (s)	4.5	4.5			4.5			4.5				
Fipb, ped/bikes 0.88 1.00 0.99 0.99 Fit 1.00 0.94 0.96 0.98 Fit 1.00 0.94 0.96 0.98 Fit 1.00 0.94 0.96 0.98 Fit 1.00 0.95 1.00 1.00 0.99 0.98 Satd. Flow (prot) 1549 1601 1647 1744 Fit Permitted 0.55 1.00 0.99 0.99 0.98 Satd. Flow (perm) 896 1601 1628 1744 Fit Peak-hour factor, PHF 0.77 0.77 0.77 0.70 0.90 0.90 0.90 0.85 0.85 0.85 0.92 0.92 0.92 Adj. Flow (vph) 110 184 1112 12 217 99 62 52 25 0 0 0 0 Lane Group Flow (vph) 110 259 0 0 302 0 0 139 0 0 0 0 0 0 Lane Group Flow (vph) 110 259 0 0 302 0 0 139 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Lane Util. Factor	1.00	1.00			1.00			1.00				
Fri 1.00 0.94 0.96 0.98 FIL Protected 0.95 1.00 1.00 0.98 FIL Permitted 0.55 1.00 0.99 0.98 FIL Permitted 0.55 1.00 0.99 0.98 FIL Protected 0.95 1.00 0.99 0.99 0.98 FIL Protected 0.95 1.00 0.99 0.99 0.98 FIL Protected 0.95 1.00 0.90 0.90 0.90 0.90 0.85 0.85 0.85 0.92 0.92 0.92 0.92 FIL Protected 0.95 1.00 0.90 0.90 0.90 0.90 0.90 0.90 0.90	Frpb, ped/bikes	1.00	0.91			0.93			0.99				
Fit Protected 0.95 1.00 1.00 0.98 Satd. Flow (prot) 1549 1601 1647 1744 Fit Permitted 0.55 1.00 0.99 0.98 Satd. Flow (prot) 896 1601 1628 1744 Peak-hour factor, PHF 0.77 0.77 0.77 0.70 0.90 0.90 0.90 0.85 0.85 0.85 0.92 0.92 0.92 Adj. Flow (prot) 110 184 112 12 217 99 62 52 25 0 0 0 0 RTOR Reduction (prot) 110 259 0 0 302 0 0 139 0 0 0 0 0 0 0 Lane Group Flow (prot) 110 259 0 0 302 0 0 139 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Flpb, ped/bikes	0.88	1.00			0.99			0.99				
Satd. Flow (prot)	Frt	1.00	0.94			0.96			0.98				
Fit Permitted 0.55 1.00 0.99 0.98 Sald. Flow (perm) 896 1601 1628 1744	Flt Protected	0.95	1.00			1.00			0.98				
Satd. Flow (perm) 896 1601 1628 1744 Peak-hour factor, PHF 0.77 0.77 0.77 0.90 0.90 0.85 0.85 0.92 0.92 0.92 Adj. Flow (vph) 110 184 112 12 217 99 62 52 25 0	Satd. Flow (prot)	1549	1601			1647			1744				
Peak-hour factor, PHF 0.77 0.77 0.77 0.90 0.90 0.90 0.85 0.85 0.92 0.92 0.92 Adj. Flow (vph) 110 184 112 217 99 62 52 25 0 0 0 RTOR Reduction (vph) 10 37 0 0 26 0 </td <td>Flt Permitted</td> <td>0.55</td> <td>1.00</td> <td></td> <td></td> <td>0.99</td> <td></td> <td></td> <td>0.98</td> <td></td> <td></td> <td></td> <td></td>	Flt Permitted	0.55	1.00			0.99			0.98				
Peak-hour factor, PHF 0.77 0.77 0.77 0.90 0.90 0.90 0.85 0.85 0.92 0.92 0.92 Adj. Flow (vph) 110 184 112 217 99 62 52 25 0 0 0 RTOR Reduction (vph) 10 37 0 0 26 0 </td <td>Satd. Flow (perm)</td> <td>896</td> <td>1601</td> <td></td> <td></td> <td>1628</td> <td></td> <td></td> <td>1744</td> <td></td> <td></td> <td></td> <td></td>	Satd. Flow (perm)	896	1601			1628			1744				
Adj. Flow (vph)		0.77		0.77	0.90	0.90	0.90	0.85	0.85	0.85	0.92	0.92	0.92
RTOR Reduction (vph) 0 37 0 0 26 0													
Lane Group Flow (vph) 110 259 0 0 302 0 0 139 0 0 0 0 0 Confl. Peds. (#/hr) 134 131 131 131 134 9 30 0 0 0 0 0 Confl. Peds. (#/hr) 134 131 131 131 134 9 30 0 0 0 0 0 0 Turn Type Perm NA Permitted Phases 4 8 2 2 Permitted Green, G (s) 29.5 29.5 29.5 29.5 21.5 Effective Green, g (s) 29.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4													
Confi. Peds. (#/hr) 134 131 131 134 9 30 Turn Type Perm NA Perm NA Perm NA Protected Phases 4 8 2 Permitted Phases 4 8 2 Actuated Green, G (s) 29.5 29.5 21.5 Effective Green, g (s) 29.5 29.5 21.5 Actuated g/C Ratio 0.49 0.49 0.36 Clearance Time (s) 4.5 4.5 4.5 Vehicle Extension (s) 3.0 3.0 3.0 Lane Grp Cap (vph) 440 787 800 624 v/s Ratio Prot 0.16 0.16 0.16 0.08 v/s Ratio Prot 0.16 0.16 0.08 0.22 Uniform Delay, d1 8.8 9.3 9.5 13.4 Progression Factor 1.00 1.00 1.04 Incremental Delay, d2 1.4 1.1 1.4 0.8 Delay (s) <													
Turn Type			207			002			.07				
Protected Phases			NA	701		NA	751		NA				
Permitted Phases 4 8 2 Actuated Green, G (s) 29.5 29.5 29.5 21.5 Effective Green, g (s) 29.5 29.5 29.5 21.5 Actuated g/C Ratio 0.49 0.49 0.36 Clearance Time (s) 4.5 4.5 4.5 Vehicle Extension (s) 3.0 3.0 3.0 3.0 3.0 Lane Grp Cap (vph) 440 787 800 624 v/s Ratio Prot 0.16 624 624 v/s Ratio Perm 0.12 0.16 0.08 v/c Ratio 0.25 0.33 0.38 0.22 Uniform Delay, d1 8.8 9.3 9.5 13.4 Progression Factor 1.00 1.00 1.04 Incremental Delay, d2 1.4 1.1 1.4 0.8 Delay (s) 10.2 10.4 10.9 14.8 Level of Service B B B B Approach LOS B B B B HCM 2000 Control Delay 11.2 HCM 2000 Level of Service<		1 01111			1 01111			1 01111					
Actuated Green, G (s)		4	•		8	U		2	_				
Effective Green, g (s) 29.5 29.5 29.5 29.5 21.5 Actuated g/C Ratio 0.49 0.49 0.49 0.36 Clearance Time (s) 4.5 4.5 4.5 4.5 Vehicle Extension (s) 3.0 3.0 3.0 3.0 Lane Grp Cap (vph) 440 787 800 624 v/s Ratio Port 0.16 v/s Ratio Perm 0.12			29 5			29 5			21 5				
Actuated g/C Ratio 0.49 0.49 0.49 0.49 0.36 Clearance Time (s) 4.5 4.5 4.5 4.5 Vehicle Extension (s) 3.0 3.0 3.0 3.0 3.0 Lane Grp Cap (vph) 440 787 800 624 v/s Ratio Prot 0.16 v/s Ratio Perm 0.12 c0.19 0.08 v/c Ratio 0.25 0.33 0.38 0.22 Uniform Delay, d1 8.8 9.3 9.5 13.4 Progression Factor 1.00 1.00 1.00 1.04 Incremental Delay, d2 1.4 1.1 1.4 0.8 Delay (s) 10.2 10.4 10.9 14.8 Level of Service B B B B B Approach Delay (s) 10.3 10.9 14.8 0.0 Approach LOS B B B B B A Intersection Summary HCM 2000 Control Delay 11.2 HCM 2000 Level of Service B HCM 2000 Volume to Capacity ratio 0.31 Actuated Cycle Length (s) 60.0 Sum of lost time (s) 9.0 Intersection Capacity Utilization 59.9% ICU Level of Service B Analysis Period (min) 15	` ,												
Clearance Time (s) 4.5 4.5 4.5 4.5 Vehicle Extension (s) 3.0 3.0 3.0 3.0 Lane Grp Cap (vph) 440 787 800 624 v/s Ratio Prot 0.16 624 624 v/s Ratio Perm 0.12 0.08 0.08 v/s Ratio 0.25 0.33 0.38 0.22 Uniform Delay, d1 8.8 9.3 9.5 13.4 Progression Factor 1.00 1.00 1.04 Incremental Delay, d2 1.4 1.1 1.4 0.8 Delay (s) 10.2 10.4 10.9 14.8 Level of Service B B B B Approach Delay (s) 10.3 10.9 14.8 0.0 Approach LOS B B B B A Intersection Summary HCM 2000 Level of Service B B HCM 2000 Volume to Capacity ratio 0.31 A A P.0 Intersection Capacity Utilization 59.9% ICU Level of Service B													
Vehicle Extension (s) 3.0 3.0 3.0 3.0 Lane Grp Cap (vph) 440 787 800 624 v/s Ratio Prot 0.16 0.16 v/s Ratio Perm 0.12 c0.19 0.08 v/c Ratio 0.25 0.33 0.38 0.22 Uniform Delay, d1 8.8 9.3 9.5 13.4 Progression Factor 1.00 1.00 1.04 Incremental Delay, d2 1.4 1.1 1.4 0.8 Delay (s) 10.2 10.4 10.9 14.8 Level of Service B B B B Approach Delay (s) 10.3 10.9 14.8 0.0 Approach LOS B B B A Intersection Summary B HCM 2000 Level of Service B HCM 2000 Volume to Capacity ratio 0.31 A A Actuated Cycle Length (s) 60.0 Sum of lost time (s) 9.0 Intersection Capacity Utilization 5													
Lane Grp Cap (vph) 440 787 800 624 v/s Ratio Prot 0.16 0.16 v/s Ratio Perm 0.12 c0.19 0.08 v/c Ratio 0.25 0.33 0.38 0.22 Uniform Delay, d1 8.8 9.3 9.5 13.4 Progression Factor 1.00 1.00 1.04 Incremental Delay, d2 1.4 1.1 1.4 0.8 Delay (s) 10.2 10.4 10.9 14.8 Level of Service B B B B Approach Delay (s) 10.3 10.9 14.8 0.0 Approach LOS B B B B A Intersection Summary B B B B B B HCM 2000 Control Delay 11.2 HCM 2000 Level of Service B B HCM 2000 Volume to Capacity ratio 0.31 A A 9.0 Intersection Capacity Utilization 59.9% ICU Level of Service B Analysis Period (min) 15 ICU Level of Service B	, ,												
v/s Ratio Prot 0.16 v/s Ratio Perm 0.12 c0.19 0.08 v/c Ratio 0.25 0.33 0.38 0.22 Uniform Delay, d1 8.8 9.3 9.5 13.4 Progression Factor 1.00 1.00 1.04 Incremental Delay, d2 1.4 1.1 1.4 0.8 Delay (s) 10.2 10.4 10.9 14.8 Level of Service B B B B Approach Delay (s) 10.3 10.9 14.8 0.0 Approach LOS B B B B A Intersection Summary B B B B A HCM 2000 Control Delay 11.2 HCM 2000 Level of Service B HCM 2000 Volume to Capacity ratio 0.31 A A 9.0 Intersection Capacity Utilization 59.9% ICU Level of Service B Analysis Period (min) 15													
v/s Ratio Perm 0.12 c0.19 0.08 v/c Ratio 0.25 0.33 0.38 0.22 Uniform Delay, d1 8.8 9.3 9.5 13.4 Progression Factor 1.00 1.00 1.00 1.04 Incremental Delay, d2 1.4 1.1 1.4 0.8 Delay (s) 10.2 10.4 10.9 14.8 Level of Service B B B B Approach Delay (s) 10.3 10.9 14.8 0.0 Approach LOS B B B B A Intersection Summary HCM 2000 Control Delay 11.2 HCM 2000 Level of Service B HCM 2000 Volume to Capacity ratio 0.31 Actuated Cycle Length (s) 60.0 Sum of lost time (s) 9.0 Intersection Capacity Utilization 59.9% ICU Level of Service B Analysis Period (min) 15		440				000			024				
v/c Ratio 0.25 0.33 0.38 0.22 Uniform Delay, d1 8.8 9.3 9.5 13.4 Progression Factor 1.00 1.00 1.04 Incremental Delay, d2 1.4 1.1 1.4 0.8 Delay (s) 10.2 10.4 10.9 14.8 Level of Service B B B B Approach Delay (s) 10.3 10.9 14.8 0.0 Approach LOS B B B B A Intersection Summary HCM 2000 Control Delay 11.2 HCM 2000 Level of Service B HCM 2000 Volume to Capacity ratio 0.31 Actuated Cycle Length (s) 60.0 Sum of lost time (s) 9.0 Intersection Capacity Utilization 59.9% ICU Level of Service B Analysis Period (min) 15		Λ 12	0.10			c0 10			U U8				
Uniform Delay, d1 8.8 9.3 9.5 13.4 Progression Factor 1.00 1.00 1.04 Incremental Delay, d2 1.4 1.1 1.4 0.8 Delay (s) 10.2 10.4 10.9 14.8 Level of Service B B B B Approach Delay (s) 10.3 10.9 14.8 0.0 Approach LOS B B B B A Intersection Summary HCM 2000 Control Delay 11.2 HCM 2000 Level of Service B HCM 2000 Volume to Capacity ratio 0.31 Actuated Cycle Length (s) 9.0 Intersection Capacity Utilization 59.9% ICU Level of Service B Analysis Period (min) 15			U 33										
Progression Factor 1.00 1.00 1.00 1.04 Incremental Delay, d2 1.4 1.1 1.4 0.8 Delay (s) 10.2 10.4 10.9 14.8 Level of Service B B B B Approach Delay (s) 10.3 10.9 14.8 0.0 Approach LOS B B B B A Intersection Summary HCM 2000 Control Delay 11.2 HCM 2000 Level of Service B HCM 2000 Volume to Capacity ratio 0.31 Actuated Cycle Length (s) 60.0 Sum of lost time (s) 9.0 Intersection Capacity Utilization 59.9% ICU Level of Service B Analysis Period (min) 15													
Incremental Delay, d2													
Delay (s) 10.2 10.4 10.9 14.8 Level of Service B B B B Approach Delay (s) 10.3 10.9 14.8 0.0 Approach LOS B B B B A Intersection Summary HCM 2000 Control Delay 11.2 HCM 2000 Level of Service B HCM 2000 Volume to Capacity ratio 0.31 Actuated Cycle Length (s) 60.0 Sum of lost time (s) 9.0 Intersection Capacity Utilization 59.9% ICU Level of Service B Analysis Period (min) 15	•												
Level of Service B B B B B B B B B B B B B B B B B B B	,												
Approach Delay (s) 10.3 10.9 14.8 0.0 Approach LOS B B B B A Intersection Summary HCM 2000 Control Delay 11.2 HCM 2000 Level of Service B HCM 2000 Volume to Capacity ratio 0.31 Actuated Cycle Length (s) 60.0 Sum of lost time (s) 9.0 Intersection Capacity Utilization 59.9% ICU Level of Service B Analysis Period (min) 15													
Approach LOS B B B A Intersection Summary HCM 2000 Control Delay 11.2 HCM 2000 Level of Service B HCM 2000 Volume to Capacity ratio 0.31 Actuated Cycle Length (s) 60.0 Sum of lost time (s) 9.0 Intersection Capacity Utilization 59.9% ICU Level of Service B Analysis Period (min) 15		U										0.0	
HCM 2000 Control Delay 11.2 HCM 2000 Level of Service B HCM 2000 Volume to Capacity ratio 0.31 Actuated Cycle Length (s) 60.0 Sum of lost time (s) 9.0 Intersection Capacity Utilization 59.9% ICU Level of Service B Analysis Period (min) 15	Approach LOS												
HCM 2000 Control Delay 11.2 HCM 2000 Level of Service B HCM 2000 Volume to Capacity ratio 0.31 Actuated Cycle Length (s) 60.0 Sum of lost time (s) 9.0 Intersection Capacity Utilization 59.9% ICU Level of Service B Analysis Period (min) 15													
HCM 2000 Volume to Capacity ratio Actuated Cycle Length (s) 60.0 Sum of lost time (s) 9.0 Intersection Capacity Utilization 59.9% ICU Level of Service B Analysis Period (min) 15				11 2	Н	CM 2000	I evel of	Service		R			
Actuated Cycle Length (s) 60.0 Sum of lost time (s) 9.0 Intersection Capacity Utilization 59.9% ICU Level of Service B Analysis Period (min) 15	,	acity ratio			11	CIVI 2000	-0401 OI	COLVICO		U			
Intersection Capacity Utilization 59.9% ICU Level of Service B Analysis Period (min) 15		acity ratio			Ç	ım of los	t time (s)			9.0			
Analysis Period (min) 15		ation						<u> </u>					
		allon			- 10	O LOVOI (J. JOI VICE			U			
	c Critical Lane Group			10									

o. West i caontice o	ti OOt (× 1011 C) (i O O t									
	ၨ	→	•	•	←	•	4	†	/	>	ļ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations					₽	7		4111				
Traffic Volume (vph)	0	0	0	0	127	215	129	1207	0	0	0	0
Future Volume (vph)	0	0	0	0	127	215	129	1207	0	0	0	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)					4.5	4.5		4.5				
Lane Util. Factor					0.95	0.95		0.86				
Frpb, ped/bikes					0.99	0.96		1.00				
Flpb, ped/bikes					1.00	1.00		0.99				
Frt					0.96	0.85		1.00				
Flt Protected					1.00	1.00		1.00				
Satd. Flow (prot)					1671	1445		6292				
Flt Permitted					1.00	1.00		1.00				
Satd. Flow (perm)					1671	1445		6292				
Peak-hour factor, PHF	0.92	0.92	0.92	0.84	0.84	0.84	0.88	0.88	0.88	0.92	0.92	0.92
Adj. Flow (vph)	0.72	0	0	0	151	256	147	1372	0	0	0.72	0.72
RTOR Reduction (vph)	0	0	0	0	17	18	0	8	0	0	0	0
Lane Group Flow (vph)	0	0	0	0	198	174	0	1511	0	0	0	0
Confl. Peds. (#/hr)	Ŭ			25	170	14	69	1011	82	· ·		
Turn Type					NA	Perm	Perm	NA	- 02			
Protected Phases					8	1 CIIII	1 CIIII	2				
Permitted Phases					U	8	2	Z				
Actuated Green, G (s)					20.5	20.5	۷	90.5				
Effective Green, g (s)					20.5	20.5		90.5				
Actuated g/C Ratio					0.17	0.17		0.75				
Clearance Time (s)					4.5	4.5		4.5				
Vehicle Extension (s)					3.0	3.0		3.0				
Lane Grp Cap (vph)					285	246		4745				
v/s Ratio Prot					0.12	240		4743				
v/s Ratio Prot v/s Ratio Perm					0.12	c0.12		0.24				
v/c Ratio					0.69	0.71		0.24				
					46.8	46.9		4.8				
Uniform Delay, d1 Progression Factor					1.00	1.00		1.00				
•					7.1	8.9		0.2				
Incremental Delay, d2					53.9	55.8		4.9				
Delay (s) Level of Service					55.9 D	22.8 E						
		0.0			54.8	Е.		A 4.9			0.0	
Approach Delay (s) Approach LOS		0.0 A			54.8 D			4.9 A			0.0 A	
Intersection Summary												
HCM 2000 Control Delay			15.5	Н	CM 2000	Level of	Service		В			
HCM 2000 Control Delay HCM 2000 Volume to Capacity	ı ratio		0.39	11	OIVI 2000	LCVCI UI	OCI VICE		D			
Actuated Cycle Length (s)	ratio		120.0	Ç	um of los	t time (c)			9.0			
Intersection Capacity Utilization	n		39.8%			of Service	.		9.0 A			
Analysis Period (min)			15	IC	O LEVEL	or oci vice	•		A			
c Critical Lane Group			10									
5 Official Earle Group												

	ၨ	→	•	•	+	•	•	<u>†</u>	~	\	 	✓
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations			7	ሻ	ર્ન						††† }	,
Traffic Volume (vph)	0	0	227	244	110	0	0	0	0	0	1277	99
Future Volume (vph)	0	0	227	244	110	0	0	0	0	0	1277	99
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)			4.5	4.5	4.5						4.5	
Lane Util. Factor			1.00	0.95	0.95						0.86	
Frpb, ped/bikes			0.98	1.00	1.00						1.00	
Flpb, ped/bikes			1.00	0.99	1.00						1.00	
Frt			0.86	1.00	1.00						0.99	
Flt Protected			1.00	0.95	0.98						1.00	
Satd. Flow (prot)			1584	1672	1732						6317	
Flt Permitted			1.00	0.95	0.98						1.00	
Satd. Flow (perm)			1584	1672	1732						6317	
Peak-hour factor, PHF	0.80	0.80	0.80	0.72	0.72	0.72	0.92	0.92	0.92	0.84	0.84	0.84
Adj. Flow (vph)	0	0	284	339	153	0	0	0	0	0	1520	118
RTOR Reduction (vph)	0	0	26	26	26	0	0	0	0	0	21	0
Lane Group Flow (vph)	0	0	258	215	225	0	0	0	0	0	1617	0
Confl. Peds. (#/hr)	26		7	7		26				32		22
Turn Type			Perm	Perm	NA						NA	
Protected Phases					8						2	
Permitted Phases			4	8								
Actuated Green, G (s)			12.3	12.3	12.3						23.7	
Effective Green, g (s)			12.3	12.3	12.3						23.7	
Actuated g/C Ratio			0.27	0.27	0.27						0.53	
Clearance Time (s)			4.5	4.5	4.5						4.5	
Vehicle Extension (s)			3.0	3.0	3.0						3.0	
Lane Grp Cap (vph)			432	457	473						3326	
v/s Ratio Prot											c0.26	
v/s Ratio Perm			c0.16	0.13	0.13							
v/c Ratio			0.60	0.47	0.48						0.49	
Uniform Delay, d1			14.2	13.6	13.7						6.8	
Progression Factor			1.00	1.00	1.00						1.00	
Incremental Delay, d2			2.2	0.8	0.8						0.5	
Delay (s)			16.4	14.4	14.4						7.3	
Level of Service			В	В	В						Α	
Approach Delay (s)		16.4			14.4			0.0			7.3	
Approach LOS		В			В			А			Α	
Intersection Summary									_			
HCM 2000 Control Delay			9.8	Н	CM 2000	Level of	Service		Α			
HCM 2000 Volume to Capaci	ty ratio		0.52									
Actuated Cycle Length (s)			45.0		um of lost				9.0			
Intersection Capacity Utilization	on		59.1%	IC	U Level (of Service			В			
Analysis Period (min)			15									
c Critical Lane Group												

	•	→	\rightarrow	•	←	•	•	†	/	>	ļ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	1>			4			4				
Traffic Volume (vph)	200	250	85	11	401	139	85	115	76	0	0	0
Future Volume (vph)	200	250	85	11	401	139	85	115	76	0	0	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	4.5	4.5			4.5			4.5				
Lane Util. Factor	1.00	1.00			1.00			1.00				
Frpb, ped/bikes	1.00	0.86			0.86			0.95				
Flpb, ped/bikes	0.82	1.00			0.99			0.98				
Frt	1.00	0.96			0.97			0.96				
Flt Protected	0.95	1.00			1.00			0.98				
Satd. Flow (prot)	1455	1542			1538			1653				
Flt Permitted	0.39	1.00			0.99			0.98				
Satd. Flow (perm)	598	1542			1528			1653				
Peak-hour factor, PHF	0.96	0.96	0.96	0.91	0.91	0.91	0.88	0.88	0.88	0.92	0.92	0.92
Adj. Flow (vph)	208	260	89	12	441	153	97	131	86	0	0	0.72
RTOR Reduction (vph)	0	21	0	0	20	0	0	0	0	0	0	0
Lane Group Flow (vph)	208	328	0	0	586	0	0	314	0	0	0	0
Confl. Peds. (#/hr)	396	320	409	409	300	396	38	317	90	U	0	U
Heavy Vehicles (%)	2%	2%	2%	2%	2%	3%	2%	2%	2%	2%	2%	2%
Turn Type	Perm	NA	270	Perm	NA	070	Perm	NA	270	270	270	270
Protected Phases	I CIIII	4		I CIIII	8		I CIIII	2				
Permitted Phases	4	7		8	U		2					
Actuated Green, G (s)	32.5	32.5		U	32.5		Z	18.5				
Effective Green, g (s)	32.5	32.5			32.5			18.5				
Actuated g/C Ratio	0.54	0.54			0.54			0.31				
Clearance Time (s)	4.5	4.5			4.5			4.5				
Vehicle Extension (s)	3.0	3.0			3.0			3.0				
	323	835			827			509				
Lane Grp Cap (vph) v/s Ratio Prot	323				827			509				
	U 3E	0.21			on 20			0.10				
v/s Ratio Perm	0.35	0.20			c0.38			0.19				
v/c Ratio	0.64	0.39			0.71			0.62				
Uniform Delay, d1	9.7	8.0			10.2			17.7				
Progression Factor	1.00	1.00			1.00			1.00				
Incremental Delay, d2	9.5	1.4			5.1			5.5				
Delay (s)	19.2	9.4			15.3			23.2				
Level of Service	В	A			B			C			0.0	
Approach LOS		13.1			15.3			23.2			0.0	
Approach LOS		В			В			С			Α	
Intersection Summary												
HCM 2000 Control Delay			16.1	Н	CM 2000	Level of	Service		В			
HCM 2000 Volume to Capa	city ratio		0.67									
Actuated Cycle Length (s)			60.0		um of lost				9.0			
Intersection Capacity Utiliza	ition		81.4%	IC	U Level	of Service	,		D			
Analysis Period (min)			15									
c Critical Lane Group												

	۶	→	•	•	•	4	4	†	~	/	ļ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		₽			र्स						नाक	
Traffic Volume (vph)	0	8	8	9	22	0	0	0	0	267	1309	126
Future Volume (vph)	0	8	8	9	22	0	0	0	0	267	1309	126
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		5.3			5.3						4.4	
Lane Util. Factor		1.00			1.00						0.86	
Frpb, ped/bikes		1.00			1.00						1.00	
Flpb, ped/bikes		1.00			1.00						0.99	
Frt		0.93			1.00						0.99	
Flt Protected		1.00			0.99						0.99	
Satd. Flow (prot)		1737			1836						6253	
Flt Permitted		1.00			0.89						0.99	
Satd. Flow (perm)		1737			1660						6253	
Peak-hour factor, PHF	0.56	0.56	0.56	0.48	0.48	0.48	0.92	0.92	0.92	0.93	0.93	0.93
Adj. Flow (vph)	0	14	14	19	46	0	0	0	0	287	1408	135
RTOR Reduction (vph)	0	13	0	0	0	0	0	0	0	0	5	0
Lane Group Flow (vph)	0	15	0	0	65	0	0	0	0	0	1825	0
Confl. Peds. (#/hr)	74					74				10		
Turn Type		NA		Perm	NA					Perm	NA	
Protected Phases		8		_	4						2	
Permitted Phases				4						2		
Actuated Green, G (s)		9.4			9.4						100.9	
Effective Green, g (s)		9.4			9.4						100.9	
Actuated g/C Ratio		0.08			0.08						0.84	
Clearance Time (s)		5.3			5.3						4.4	
Vehicle Extension (s)		3.0			3.0						3.0	
Lane Grp Cap (vph)		136			130						5257	
v/s Ratio Prot		0.01										
v/s Ratio Perm					c0.04						0.29	
v/c Ratio		0.11			0.50						0.35	
Uniform Delay, d1		51.4			53.0						2.1	
Progression Factor		1.00			1.00						1.00	
Incremental Delay, d2		0.4			3.0						0.2	
Delay (s)		51.8			56.1						2.3	
Level of Service		D			E			0.0			A	
Approach LOS		51.8			56.1			0.0			2.3	
Approach LOS		D			E			Α			A	
Intersection Summary												
HCM 2000 Control Delay			4.9	Н	CM 2000	Level of	Service		Α			
HCM 2000 Volume to Capac	ity ratio		0.36									
Actuated Cycle Length (s)			120.0		um of los				9.7			
Intersection Capacity Utilizati	ion		47.0%	IC	U Level	of Service			Α			
Analysis Period (min)			15									
c Critical Lane Group												

	٦	•	4	†		4
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	ሻ			4111		
Traffic Volume (veh/h)	103	0	43	1314	0	0
Future Volume (Veh/h)	103	0	43	1314	0	0
Sign Control	Stop			Free	Free	
Grade	0%			0%	0%	
Peak Hour Factor	0.68	0.68	0.96	0.96	0.92	0.92
Hourly flow rate (vph)	151	0	45	1369	0	0
Pedestrians	53				2	
Lane Width (ft)	12.0				0.0	
Walking Speed (ft/s)	3.5				3.5	
Percent Blockage	5				0	
Right turn flare (veh)						
Median type				None	None	
Median storage veh)						
Upstream signal (ft)						
pX, platoon unblocked						
vC, conflicting volume	487	53	53			
vC1, stage 1 conf vol						
vC2, stage 2 conf vol						
vCu, unblocked vol	487	53	53			
tC, single (s)	6.8	6.9	4.1			
tC, 2 stage (s)						
tF (s)	3.5	3.3	2.2			
p0 queue free %	68	100	97			
cM capacity (veh/h)	469	953	1473			
Direction, Lane #	EB 1	NB 1	NB 2	NB 3	NB 4	
Volume Total	151	241	391	391	391	
Volume Left	151	45	0	0	0	
Volume Right	0	0	0	0	0	
cSH	469	1473	1700	1700	1700	
	0.32	0.03	0.23	0.23	0.23	
Volume to Capacity	0.32 34	0.03	0.23	0.23	0.23	
Queue Length 95th (ft)						
Control Delay (s)	16.3	1.6	0.0	0.0	0.0	
Lane LOS	C	A				
Approach LOS	16.3	0.3				
Approach LOS	С					
Intersection Summary						
Average Delay			1.8			
Intersection Capacity Utiliz	ation		32.1%	IC	CU Level o	of Service
Analysis Period (min)			15			

	۶	→	•	•	+	•	•	†	<i>></i>	/	+	✓
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		र्स			₽			ना				
Traffic Volume (veh/h)	66	54	0	0	124	80	270	1469	209	0	0	0
Future Volume (Veh/h)	66	54	0	0	124	80	270	1469	209	0	0	0
Sign Control		Stop			Stop			Free			Free	
Grade		0%			0%			0%			0%	
Peak Hour Factor	0.92	0.92	0.92	0.81	0.81	0.81	0.96	0.96	0.96	0.92	0.92	0.92
Hourly flow rate (vph)	72	59	0	0	153	99	281	1530	218	0	0	0
Pedestrians		52			59			11			11	
Lane Width (ft)		12.0			12.0			12.0			0.0	
Walking Speed (ft/s)		3.5			3.5			3.5			3.5	
Percent Blockage		5			6			1			0	
Right turn flare (veh)												
Median type								None			None	
Median storage veh)												
Upstream signal (ft)												
pX, platoon unblocked												
vC, conflicting volume	1183	2421	63	2300	2312	562	52			1807		
vC1, stage 1 conf vol												
vC2, stage 2 conf vol												
vCu, unblocked vol	1183	2421	63	2300	2312	562	52			1807		
tC, single (s)	7.5	6.5	6.9	7.5	6.5	6.9	4.1			4.1		
tC, 2 stage (s)												
tF (s)	3.5	4.0	3.3	3.5	4.0	3.3	2.2			2.2		
p0 queue free %	0	0	100	0	0	78	81			100		
cM capacity (veh/h)	0	23	930	0	27	444	1475			318		
Direction, Lane #	EB 1	WB 1	NB 1	NB 2	NB 3	NB 4						
Volume Total	131	252	536	510	510	473						
Volume Left	72	0	281	0	0	0						
Volume Right	0	99	0	0	0	218						
cSH	0	43	1475	1700	1700	1700						
Volume to Capacity	Err	5.84	0.19	0.30	0.30	0.28						
Queue Length 95th (ft)	Err	Err	18	0	0	0						
Control Delay (s)	Err	Err	5.1	0.0	0.0	0.0						
Lane LOS	F	F	Α									
Approach Delay (s)	Err	Err	1.3									
Approach LOS	F	F										
Intersection Summary												
Average Delay			Err									
Intersection Capacity Utiliza	ation		58.2%	IC	CU Level	of Service			В			
Analysis Period (min)			15									

	۶	→	•	•	←	4	1	†	<i>></i>	/	+	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		↑			र्स						नााः	
Traffic Volume (veh/h)	0	17	54	114	187	0	0	0	0	195	1048	204
Future Volume (Veh/h)	0	17	54	114	187	0	0	0	0	195	1048	204
Sign Control		Stop			Stop			Free			Free	
Grade		0%			0%			0%			0%	
Peak Hour Factor	0.72	0.72	0.72	0.86	0.86	0.86	0.92	0.92	0.92	0.94	0.94	0.94
Hourly flow rate (vph)	0	24	75	133	217	0	0	0	0	207	1115	217
Pedestrians		14			16			7			15	
Lane Width (ft)		12.0			12.0			0.0			12.0	
Walking Speed (ft/s)		3.5			3.5			3.5			3.5	
Percent Blockage		1			2			0			1	
Right turn flare (veh)												
Median type								None			None	
Median storage veh)												
Upstream signal (ft)											288	
pX, platoon unblocked	0.96	0.96	0.96	0.96	0.96		0.96					
vC, conflicting volume	1775	1668	408	803	1776	31	1346			16		
vC1, stage 1 conf vol												
vC2, stage 2 conf vol												
vCu, unblocked vol	1592	1480	166	578	1593	31	1144			16		
tC, single (s)	7.5	6.5	6.9	7.5	6.5	6.9	4.1			4.1		
tC, 2 stage (s)												
tF (s)	3.5	4.0	3.3	3.5	4.0	3.3	2.2			2.2		
p0 queue free %	0	76	91	46	0	100	100			87		
cM capacity (veh/h)	0	101	803	247	86	1006	573			1576		
Direction, Lane #	EB 1	WB 1	SB 1	SB 2	SB 3	SB 4						
Volume Total	99	350	393	372	372	403						
Volume Left	0	133	207	0	0	0						
Volume Right	75	0	0	0	0	217						
cSH	298	114	1576	1700	1700	1700						
Volume to Capacity	0.33	3.07	0.13	0.22	0.22	0.24						
Queue Length 95th (ft)	35	Err	11	0	0	0						
Control Delay (s)	22.9	Err	4.6	0.0	0.0	0.0						
Lane LOS	С	F	Α									
Approach Delay (s)	22.9	Err	1.2									
Approach LOS	С	F										
Intersection Summary												
Average Delay			1762.4									
Intersection Capacity Utilizat	tion		51.2%	IC	CU Level	of Service			Α			
Analysis Period (min)			15									

Movement EBL EBT WBT WBR SBL SBR Lane Configurations Traffic Volume (veh/h) 0 80 94 186 31 7 Future Volume (Veh/h) 0 80 94 186 31 7 Figure Control
Lane Configurations Image: Configuration of the
Traffic Volume (veh/h) 0 80 94 186 31 7 Future Volume (Veh/h) 0 80 94 186 31 7
Future Volume (Veh/h) 0 80 94 186 31 7
Cign Control From From Ston
Sign Control Free Free Stop
Grade 0% 0% 0%
Peak Hour Factor 0.89 0.89 0.91 0.90 0.50
Hourly flow rate (vph) 0 90 103 204 62 14
Pedestrians 1 1 3
Lane Width (ft) 12.0 12.0 12.0
Walking Speed (ft/s) 3.5 3.5 3.5
Percent Blockage 0 0 0
Right turn flare (veh)
Median type None None
Median storage veh)
Upstream signal (ft)
pX, platoon unblocked
vC, conflicting volume 310 299 209
vC1, stage 1 conf vol
vC2, stage 2 conf vol
vCu, unblocked vol 310 299 209
tC, single (s) 4.1 6.4 6.2
tC, 2 stage (s)
tF (s) 2.2 3.5 3.3
p0 queue free % 100 91 98
cM capacity (veh/h) 1247 690 828
Direction, Lane # EB 1 WB 1 SB 1
Volume Total 90 307 76
Volume Left 0 0 62
Volume Right 0 204 14
cSH 1247 1700 712
Volume to Capacity 0.00 0.18 0.11
Queue Length 95th (ft) 0 0 9
Control Delay (s) 0.0 0.0 10.7
Lane LOS B
Approach Delay (s) 0.0 0.0 10.7
Approach LOS B
Intersection Summary
Average Delay 1.7
Intersection Capacity Utilization 26.9% ICU Level of Service
Analysis Period (min) 15

	•	4	†	~	/	
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	¥		ĵ.			4
Traffic Volume (veh/h)	1	29	82	19	29	73
Future Volume (Veh/h)	1	29	82	19	29	73
Sign Control	Stop		Free			Free
Grade	0%		0%			0%
Peak Hour Factor	0.70	0.70	0.91	0.91	0.82	0.82
Hourly flow rate (vph)	1	41	90	21	35	89
Pedestrians	3					
Lane Width (ft)	12.0					
Walking Speed (ft/s)	3.5					
Percent Blockage	0					
Right turn flare (veh)						
Median type			None			None
Median storage veh)						
Upstream signal (ft)						
pX, platoon unblocked						
vC, conflicting volume	262	104			114	
vC1, stage 1 conf vol						
vC2, stage 2 conf vol						
vCu, unblocked vol	262	104			114	
tC, single (s)	6.4	6.2			4.1	
tC, 2 stage (s)						
tF (s)	3.5	3.3			2.2	
p0 queue free %	100	96			98	
cM capacity (veh/h)	707	949			1471	
Direction, Lane #	WB 1	NB 1	SB 1			
Volume Total	42	111	124			
Volume Left	1	0	35			
Volume Right	41	21	0			
cSH	941	1700	1471			
Volume to Capacity	0.04	0.07	0.02			
Queue Length 95th (ft)	3	0	2			
Control Delay (s)	9.0	0.0	2.3			
Lane LOS	A	0.0	A			
Approach Delay (s)	9.0	0.0	2.3			
Approach LOS	А					
Intersection Summary						
Average Delay			2.4			
Intersection Capacity Utiliz	zation		22.1%	IC	III ovol o	of Service
	ZatiUH			IC	O LEVEL	JI SEI VICE
Analysis Period (min)			15			

	٠	→	•	•	←	•	4	†	<i>></i>	>	↓	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	f)			4			4				
Traffic Volume (veh/h)	85	142	86	11	195	89	53	44	21	0	0	0
Future Volume (Veh/h)	85	142	86	11	195	89	53	44	21	0	0	0
Sign Control		Free			Free			Stop			Stop	
Grade		0%			0%			0%			0%	
Peak Hour Factor	0.77	0.77	0.77	0.90	0.90	0.90	0.85	0.85	0.85	0.92	0.92	0.92
Hourly flow rate (vph)	110	184	112	12	217	99	62	52	25	0	0	0
Pedestrians		9			30			131			134	
Lane Width (ft)		12.0			12.0			12.0			0.0	
Walking Speed (ft/s)		3.5			3.5			3.5			3.5	
Percent Blockage		1			3			12			0	
Right turn flare (veh)												
Median type		None			None							
Median storage veh)												
Upstream signal (ft)												
pX, platoon unblocked												
vC, conflicting volume	450			427			890	1065	401	910	1072	410
vC1, stage 1 conf vol												
vC2, stage 2 conf vol												
vCu, unblocked vol	450			427			890	1065	401	910	1072	410
tC, single (s)	4.1			4.1			7.1	6.5	6.2	7.1	6.5	6.2
tC, 2 stage (s)												
tF (s)	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free %	90			99			67	70	95	100	100	100
cM capacity (veh/h)	1110			991			190	173	552	153	172	636
Direction, Lane #	EB 1	EB 2	WB 1	NB 1								
Volume Total	110	296	328	139								
Volume Left	110	0	12	62								
Volume Right	0	112	99	25								
cSH	1110	1700	991	207								
Volume to Capacity	0.10	0.17	0.01	0.67								
Queue Length 95th (ft)	8	0	1	103								
Control Delay (s)	8.6	0.0	0.4	52.1								
Lane LOS	Α		Α	F								
Approach Delay (s)	2.3		0.4	52.1								
Approach LOS				F								
Intersection Summary												
Average Delay			9.6									
Intersection Capacity Utilization	ation		54.6%	IC	CU Level	of Service			Α			
Analysis Period (min)			15									

	-	\rightarrow	•	•	•	~
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	ĵ.			4	¥#	
Traffic Volume (veh/h)	71	219	13	29	2	42
Future Volume (Veh/h)	71	219	13	29	2	42
Sign Control	Free			Free	Stop	
Grade	0%			0%	0%	
Peak Hour Factor	0.68	0.68	0.48	0.48	0.92	0.92
Hourly flow rate (vph)	104	322	27	60	2	46
Pedestrians					_	
Lane Width (ft)						
Walking Speed (ft/s)						
Percent Blockage						
Right turn flare (veh)						
Median type	None			None		
Median storage veh)	110110			140110		
Upstream signal (ft)	236					
pX, platoon unblocked	200					
vC, conflicting volume			426		379	265
vC1, stage 1 conf vol			120		0,,	200
vC2, stage 2 conf vol						
vCu, unblocked vol			426		379	265
tC, single (s)			4.1		6.4	6.2
tC, 2 stage (s)					J	
tF (s)			2.2		3.5	3.3
p0 queue free %			98		100	94
cM capacity (veh/h)			1133		608	774
Direction, Lane #	EB 1	WB 1	NB 1			
Volume Total	426	87	48			
Volume Left	0	27	2			
Volume Right	322	0	46			
cSH	1700	1133	765			
Volume to Capacity	0.25	0.02	0.06			
Queue Length 95th (ft)	0.23	2	5			
Control Delay (s)	0.0	2.7	10.0			
Lane LOS	0.0	Α	В			
Approach Delay (s)	0.0	2.7	10.0			
Approach LOS	0.0	۷.1	В			
			D			
Intersection Summary			4.0			
Average Delay	-11		1.3			
Intersection Capacity Utiliza	ation		27.2%	IC	U Level o	of Service
Analysis Period (min)			15			

	٦	→	←	4	-	1	
Movement	EBL	EBT	WBT	WBR	SBL	SBR	
Lane Configurations		र्स	1>		W		
Traffic Volume (veh/h)	66	192	280	99	6	20	
Future Volume (Veh/h)	66	192	280	99	6	20	
Sign Control		Free	Free		Stop		
Grade		0%	0%		0%		
Peak Hour Factor	0.92	0.92	0.86	0.86	0.92	0.92	
Hourly flow rate (vph)	72	209	326	115	7	22	
Pedestrians							
Lane Width (ft)							
Walking Speed (ft/s)							
Percent Blockage							
Right turn flare (veh)							
Median type		None	None				
Median storage veh)							
Upstream signal (ft)							
pX, platoon unblocked							
vC, conflicting volume	441				736	384	
vC1, stage 1 conf vol							
vC2, stage 2 conf vol							
vCu, unblocked vol	441				736	384	
tC, single (s)	4.1				6.4	6.2	
tC, 2 stage (s)							
tF (s)	2.2				3.5	3.3	
p0 queue free %	94				98	97	
cM capacity (veh/h)	1119				361	664	
Direction, Lane #	EB 1	WB 1	SB 1				
Volume Total	281	441	29				
Volume Left	72	0	7				
Volume Right	0	115	22				
cSH	1119	1700	552				
Volume to Capacity	0.06	0.26	0.05				
Queue Length 95th (ft)	5	0	4				
Control Delay (s)	2.6	0.0	11.9				
Lane LOS	A	0.0	В				
Approach Delay (s)	2.6	0.0	11.9				
Approach LOS	2.0	0.0	В				
Intersection Summary							
			1.4				
Average Delay Intersection Capacity Utiliz	zation		47.8%	10	III ovol s	of Service	
	ZaliUli			IC	U Level (n service	
Analysis Period (min)			15				

	ၨ	→	•	•	←	•	•	†	/	>	ţ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		f)			ર્ન						नाा	
Traffic Volume (vph)	0	82	34	36	32	0	0	0	0	125	1266	121
Future Volume (vph)	0	82	34	36	32	0	0	0	0	125	1266	121
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		5.3			5.3						4.4	
Lane Util. Factor		1.00			1.00						0.86	
Frpb, ped/bikes		1.00			1.00						1.00	
Flpb, ped/bikes		1.00			1.00						0.99	
Frt		0.96			1.00						0.99	
Flt Protected		1.00			0.97						1.00	
Satd. Flow (prot)		1782			1814						6264	
Flt Permitted		1.00			0.80						1.00	
Satd. Flow (perm)		1782			1482						6264	
Peak-hour factor, PHF	0.69	0.69	0.69	0.81	0.81	0.81	0.92	0.92	0.92	0.87	0.87	0.87
Adj. Flow (vph)	0	119	49	44	40	0	0	0	0	144	1455	139
RTOR Reduction (vph)	0	12	0	0	0	0	0	0	0	0	11	0
Lane Group Flow (vph)	0	156	0	0	84	0	0	0	0	0	1727	0
Confl. Peds. (#/hr)	199		1	1		199				22		
Turn Type		NA		Perm	NA					Perm	NA	
Protected Phases		8			4						2	
Permitted Phases				4						2		
Actuated Green, G (s)		36.7			36.7						73.6	
Effective Green, g (s)		36.7			36.7						73.6	
Actuated g/C Ratio		0.31			0.31						0.61	
Clearance Time (s)		5.3			5.3						4.4	
Lane Grp Cap (vph)		544			453						3841	
v/s Ratio Prot		c0.09										
v/s Ratio Perm					0.06						0.28	
v/c Ratio		0.29			0.19						0.45	
Uniform Delay, d1		31.7			30.7						12.4	
Progression Factor		1.00			1.00						1.00	
Incremental Delay, d2		1.3			0.9						0.4	
Delay (s)		33.0			31.6						12.8	
Level of Service		С			С						В	
Approach Delay (s)		33.0			31.6			0.0			12.8	
Approach LOS		С			С			А			В	
Intersection Summary												
HCM 2000 Control Delay			15.3	Н	CM 2000	Level of	Service		В			
HCM 2000 Volume to Capaci	ty ratio		0.39									
Actuated Cycle Length (s)			120.0		um of los				9.7			
Intersection Capacity Utilization	on		44.5%	IC	CU Level	of Service	.		Α			
Analysis Period (min)			15									

	۶	•	1	†	 	4
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	ሻ			4111		
Traffic Volume (veh/h)	335	0	61	1479	0	0
Future Volume (Veh/h)	335	0	61	1479	0	0
Sign Control	Stop			Free	Free	
Grade	0%			0%	0%	
Peak Hour Factor	0.88	0.88	0.90	0.90	0.92	0.92
Hourly flow rate (vph)	381	0	68	1643	0	0
Pedestrians	75			1		
Lane Width (ft)	12.0			12.0		
Walking Speed (ft/s)	3.5			3.5		
Percent Blockage	7			0		
Right turn flare (veh)						
Median type				None	None	
Median storage veh)						
Upstream signal (ft)						
pX, platoon unblocked						
vC, conflicting volume	622	76	75			
vC1, stage 1 conf vol	022					
vC2, stage 2 conf vol						
vCu, unblocked vol	622	76	75			
tC, single (s)	6.8	6.9	4.1			
tC, 2 stage (s)	0.0	0.7				
tF (s)	3.5	3.3	2.2			
p0 queue free %	0	100	95			
cM capacity (veh/h)	370	900	1414			
				ND 0	ND 4	
Direction, Lane #	EB 1	NB 1	NB 2	NB 3	NB 4	
Volume Total	381	303	469	469	469	
Volume Left	381	68	0	0	0	
Volume Right	0	0	1700	1700	0	
cSH	370	1414	1700	1700	1700	
Volume to Capacity	1.03	0.05	0.28	0.28	0.28	
Queue Length 95th (ft)	316	4	0	0	0	
Control Delay (s)	88.7	2.1	0.0	0.0	0.0	
Lane LOS	F	Α				
Approach Delay (s)	88.7	0.4				
Approach LOS	F					
Intersection Summary						
			16.5			
Intersection Capacity Utiliza	ition			IC	CU Level	of Service
Average Delay Intersection Capacity Utiliza Analysis Period (min)	ition		16.5 47.6% 15	IC	CU Level o	of Service

	۶	→	•	•	+	•	1	†	<i>></i>	/	↓	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		र्स			₽			नाक				
Traffic Volume (veh/h)	152	146	0	0	127	215	124	1195	153	0	0	0
Future Volume (Veh/h)	152	146	0	0	127	215	124	1195	153	0	0	0
Sign Control		Stop			Stop			Free			Free	
Grade		0%			0%			0%			0%	
Peak Hour Factor	0.92	0.92	0.92	0.84	0.84	0.84	0.88	0.88	0.88	0.92	0.92	0.92
Hourly flow rate (vph)	165	159	0	0	151	256	141	1358	174	0	0	0
Pedestrians		69			82			25			14	
Lane Width (ft)		12.0			12.0			12.0			0.0	
Walking Speed (ft/s)		3.5			3.5			3.5			3.5	
Percent Blockage		7			8			2			0	
Right turn flare (veh)												
Median type								None			None	
Median storage veh)												
Upstream signal (ft)												
pX, platoon unblocked												
vC, conflicting volume	1036	1965	94	1914	1878	522	69			1614		
vC1, stage 1 conf vol												
vC2, stage 2 conf vol												
vCu, unblocked vol	1036	1965	94	1914	1878	522	69			1614		
tC, single (s)	7.5	6.5	6.9	7.5	6.5	6.9	4.1			4.1		
tC, 2 stage (s)												
tF (s)	3.5	4.0	3.3	3.5	4.0	3.3	2.2			2.2		
p0 queue free %	0	0	100	0	0	44	90			100		
cM capacity (veh/h)	0	48	861	0	55	460	1429			369		
Direction, Lane #	EB 1	WB 1	NB 1	NB 2	NB 3	NB 4						
Volume Total	324	407	367	453	453	400						
Volume Left	165	0	141	0	0	0						
Volume Right	0	256	0	0	0	174						
cSH	0	123	1429	1700	1700	1700						
Volume to Capacity	Err	3.31	0.10	0.27	0.27	0.24						
Queue Length 95th (ft)	Err	Err	8	0	0	0						
Control Delay (s)	Err	Err	3.5	0.0	0.0	0.0						
Lane LOS	F	F	Α									
Approach Delay (s)	Err	Err	0.8									
Approach LOS	F	F										
Intersection Summary												
Average Delay			Err									
Intersection Capacity Utiliza	ation		69.2%	IC	CU Level	of Service			С			
Analysis Period (min)			15									

	۶	-	•	•	—	•	•	†	/	/	ţ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		↑			र्स						साभि	
Traffic Volume (veh/h)	0	93	208	214	110	0	0	0	0	201	1266	99
Future Volume (Veh/h)	0	93	208	214	110	0	0	0	0	201	1266	99
Sign Control		Stop			Stop			Free			Free	
Grade		0%			0%			0%			0%	
Peak Hour Factor	0.80	0.80	0.80	0.72	0.72	0.72	0.92	0.92	0.92	0.84	0.84	0.84
Hourly flow rate (vph)	0	116	260	297	153	0	0	0	0	239	1507	118
Pedestrians		22			32			7			26	
Lane Width (ft)		12.0			12.0			0.0			12.0	
Walking Speed (ft/s)		3.5			3.5			3.5			3.5	
Percent Blockage		2			3			0			2	
Right turn flare (veh)												
Median type								None			None	
Median storage veh)												
Upstream signal (ft)											288	
pX, platoon unblocked	0.87	0.87	0.87	0.87	0.87		0.87					
vC, conflicting volume	2168	2098	465	1212	2157	58	1647			32		
vC1, stage 1 conf vol												
vC2, stage 2 conf vol												
vCu, unblocked vol	1591	1510	0	490	1577	58	991			32		
tC, single (s)	7.5	6.5	6.9	7.5	6.5	6.9	4.1			4.1		
tC, 2 stage (s)												
tF (s)	3.5	4.0	3.3	3.5	4.0	3.3	2.2			2.2		
p0 queue free %	0	0	72	0	0	100	100			84		
cM capacity (veh/h)	0	83	922	0	75	942	590			1530		
Direction, Lane #	EB 1	WB 1	SB 1	SB 2	SB 3	SB 4						
Volume Total	376	450	490	502	502	369						
Volume Left	0	297	239	0	0	0						
Volume Right	260	0	0	0	0	118						
cSH	224	0	1530	1700	1700	1700						
Volume to Capacity	1.68	Err	0.16	0.30	0.30	0.22						
Queue Length 95th (ft)	618	Err	14	0	0	0						
Control Delay (s)	361.8	Err	4.5	0.0	0.0	0.0						
Lane LOS	F	F	Α									
Approach Delay (s)	361.8	Err	1.2									
Approach LOS	F	F										
Intersection Summary												
Average Delay			Err									
Intersection Capacity Utiliz	zation		69.0%	IC	U Level	of Service			С			
Analysis Period (min)			15									

	•	-	←	•	\	4
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		4	1>		W	
Traffic Volume (veh/h)	0	85	117	76	257	129
Future Volume (Veh/h)	0	85	117	76	257	129
Sign Control		Free	Free		Stop	
Grade		0%	0%		0%	
Peak Hour Factor	0.74	0.74	0.79	0.79	0.88	0.88
Hourly flow rate (vph)	0	115	148	96	292	147
Pedestrians		6			4	
Lane Width (ft)		12.0			12.0	
Walking Speed (ft/s)		3.5			3.5	
Percent Blockage		1			0	
Right turn flare (veh)						
Median type		None	None			
Median storage veh)						
Upstream signal (ft)						
pX, platoon unblocked						
vC, conflicting volume	248				315	206
vC1, stage 1 conf vol						
vC2, stage 2 conf vol						
vCu, unblocked vol	248				315	206
tC, single (s)	4.1				6.4	6.2
tC, 2 stage (s)						
tF (s)	2.2				3.5	3.3
p0 queue free %	100				57	82
cM capacity (veh/h)	1313				675	827
Direction, Lane #	EB 1	WB 1	SB 1			
Volume Total	115	244	439			
Volume Left	0	0	292			
Volume Right	0	96	147			
cSH	1313	1700	719			
Volume to Capacity	0.00	0.14	0.61			
Queue Length 95th (ft)	0	0	105			
Control Delay (s)	0.0	0.0	17.5			
Lane LOS			С			
Approach Delay (s)	0.0	0.0	17.5			
Approach LOS			С			
Intersection Summary						
Average Delay			9.6			
Intersection Capacity Utiliza	ation		40.3%	IC	U Level o	f Service
Analysis Period (min)			15		2 20101 0	5011100

7. Williamo Otroot	<u> </u>	→	`	•	—	•	•	<u>†</u>	<i>></i>	\	1	1
Movement	EBL	EBT	EBR	₩BL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	1→			4			4				
Traffic Volume (veh/h)	200	250	85	11	401	139	85	115	76	0	0	0
Future Volume (Veh/h)	200	250	85	11	401	139	85	115	76	0	0	0
Sign Control	200	Free	00		Free	107	00	Stop	, 0		Stop	
Grade		0%			0%			0%			0%	
Peak Hour Factor	0.96	0.96	0.96	0.91	0.91	0.91	0.88	0.88	0.88	0.92	0.92	0.92
Hourly flow rate (vph)	208	260	89	12	441	153	97	131	86	0	0	0.72
Pedestrians	200	38	0,		90	100		409	00		396	
Lane Width (ft)		12.0			12.0			12.0			0.0	
Walking Speed (ft/s)		3.5			3.5			3.5			3.5	
Percent Blockage		4			9			39			0	
Right turn flare (veh)		•			,			0,			Ū	
Median type		None			None							
Median storage veh)		None			TVOITE							
Upstream signal (ft)												
pX, platoon unblocked												
vC, conflicting volume	990			758			1709	2144	804	1855	2112	952
vC1, stage 1 conf vol	770			700			1707	2111	001	1000	2112	702
vC2, stage 2 conf vol												
vCu, unblocked vol	990			758			1709	2144	804	1855	2112	952
tC, single (s)	4.1			4.1			7.1	6.5	6.2	7.1	6.5	6.2
tC, 2 stage (s)	1.1						,.,	0.0	0.2	7.1	0.0	0.2
tF (s)	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free %	70			98			0	0	60	0	100	100
cM capacity (veh/h)	698			521			23	20	214	0	21	303
Direction, Lane #	EB 1	EB 2	WB 1	NB 1			20	20	211		۲۱	000
Volume Total	208	349	606	314								
Volume Left	208	0	12	97								
Volume Right	0	89	153	86								
cSH	698	1700	521	28								
Volume to Capacity	0.30	0.21	0.02	11.11								
Queue Length 95th (ft)	31	0	2	Err								
Control Delay (s)	12.3	0.0	0.7	Err								
Lane LOS	В		A	F								
Approach Delay (s) Approach LOS	4.6		0.7	Err F								
Intersection Summary												
Average Delay			2127.7									
Intersection Capacity Utiliz	ation		80.2%	IC	CU Level	of Service			D			
Analysis Period (min)			15									

	-	•	•	←	4	<i>></i>	
Movement	EBT	EBR	WBL	WBT	NBL	NBR	
Lane Configurations	f			4	W		
Traffic Volume (veh/h)	138	99	5	56	12	211	
Future Volume (Veh/h)	138	99	5	56	12	211	
Sign Control	Free			Free	Stop		
Grade	0%			0%	0%		
Peak Hour Factor	0.88	0.88	0.81	0.81	0.92	0.92	
Hourly flow rate (vph)	157	113	6	69	13	229	
Pedestrians							
Lane Width (ft)							
Walking Speed (ft/s)							
Percent Blockage							
Right turn flare (veh)							
Median type	None			None			
Median storage veh)							
Upstream signal (ft)	236						
pX, platoon unblocked			0.95		0.95	0.95	
vC, conflicting volume			270		294	214	
vC1, stage 1 conf vol							
vC2, stage 2 conf vol							
vCu, unblocked vol			210		235	150	
tC, single (s)			4.1		6.4	6.2	
tC, 2 stage (s)							
tF (s)			2.2		3.5	3.3	
p0 queue free %			100		98	73	
cM capacity (veh/h)			1297		714	854	
Direction, Lane #	EB 1	WB 1	NB 1				
Volume Total	270	75	242				
Volume Left	0	6	13				
Volume Right	113	0	229				
cSH	1700	1297	845				
Volume to Capacity	0.16	0.00	0.29				
Queue Length 95th (ft)	0	0	30				
Control Delay (s)	0.0	0.7	11.0				
Lane LOS	0.0	A	В				
Approach Delay (s)	0.0	0.7	11.0				
Approach LOS	0.0	0.7	В				
Intersection Summary			A /				
Average Delay	4!		4.6		111	f C!	
Intersection Capacity Utiliza	ition		33.7%	IC	U Level o	of Service	
Analysis Period (min)			15				

	•	→	←	4	-	4	
Movement	EBL	EBT	WBT	WBR	SBL	SBR	
Lane Configurations		4	1>		W		
Traffic Volume (veh/h)	27	286	218	41	31	105	
Future Volume (Veh/h)	27	286	218	41	31	105	
Sign Control		Free	Free		Stop		
Grade		0%	0%		0%		
Peak Hour Factor	0.92	0.92	0.72	0.72	0.92	0.92	
Hourly flow rate (vph)	29	311	303	57	34	114	
Pedestrians							
Lane Width (ft)							
Walking Speed (ft/s)							
Percent Blockage							
Right turn flare (veh)							
Median type		None	None				
Median storage veh)							
Upstream signal (ft)							
pX, platoon unblocked							
vC, conflicting volume	360				700	332	
vC1, stage 1 conf vol							
vC2, stage 2 conf vol							
vCu, unblocked vol	360				700	332	
tC, single (s)	4.1				6.4	6.2	
tC, 2 stage (s)							
tF (s)	2.2				3.5	3.3	
p0 queue free %	98				91	84	
cM capacity (veh/h)	1199				395	710	
Direction, Lane #	EB 1	WB 1	SB 1				
Volume Total	340	360	148				
Volume Left	29	0	34				
Volume Right	0	57	114				
cSH	1199	1700	600				
Volume to Capacity	0.02	0.21	0.25				
Queue Length 95th (ft)	2	0	24				
Control Delay (s)	0.9	0.0	12.9				
Lane LOS	А		В				
Approach Delay (s)	0.9	0.0	12.9				
Approach LOS			В				
Intersection Summary							
Average Delay			2.6				
Intersection Capacity Utiliz	zation		48.7%	IC	III evel d	of Service	
Analysis Period (min)	Lation		15	10	O LOVOI C	71 301 1100	
Anaiysis Fenou (IIIIII)			10				

	۶	→	•	•	—	•	1	†	/	/	+	√
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		र्स			₽			4ा।।				
Traffic Volume (vph)	66	54	0	0	124	80	270	1469	209	0	0	0
Future Volume (vph)	66	54	0	0	124	80	270	1469	209	0	0	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		4.5			4.5			4.5				
Lane Util. Factor		1.00			1.00			0.86				
Frpb, ped/bikes		1.00			0.99			0.98				
Flpb, ped/bikes		1.00			1.00			0.98				
Frt		1.00			0.95			0.98				
Flt Protected		0.97			1.00			0.99				
Satd. Flow (prot)		1813			1741			5971				
Flt Permitted		0.34			1.00			0.99				
Satd. Flow (perm)		631			1741			5971				
Peak-hour factor, PHF	0.92	0.92	0.92	0.81	0.81	0.81	0.96	0.96	0.96	0.92	0.92	0.92
Adj. Flow (vph)	72	59	0	0	153	99	281	1530	218	0	0	0
RTOR Reduction (vph)	0	0	0	0	20	0	0	11	0	0	0	0
Lane Group Flow (vph)	0	131	0	0	232	0	0	2018	0	0	0	0
Confl. Peds. (#/hr)				11		11	52		59			
Turn Type	Perm	NA			NA		Perm	NA				
Protected Phases		4			8			2				
Permitted Phases	4						2					
Actuated Green, G (s)		21.5			21.5			89.5				
Effective Green, g (s)		21.5			21.5			89.5				
Actuated g/C Ratio		0.18			0.18			0.75				
Clearance Time (s)		4.5			4.5			4.5				
Vehicle Extension (s)		3.0			3.0			3.0				
Lane Grp Cap (vph)		113			311			4453				
v/s Ratio Prot					0.13							
v/s Ratio Perm		c0.21						0.34				
v/c Ratio		1.16			0.75			0.45				
Uniform Delay, d1		49.2			46.7			5.9				
Progression Factor		1.23			1.00			1.00				
Incremental Delay, d2		132.6			9.4			0.3				
Delay (s)		193.4			56.1			6.2				
Level of Service		F			E			А				
Approach Delay (s)		193.4			56.1			6.2			0.0	
Approach LOS		F			E			Α			Α	
Intersection Summary												
HCM 2000 Control Delay			21.6	H	CM 2000	Level of	Service		С			
HCM 2000 Volume to Capac	ity ratio		0.59									
Actuated Cycle Length (s)			120.0		um of los				9.0			
Intersection Capacity Utilizati	ion		59.9%	IC	U Level	of Service	9		В			
Analysis Period (min)			15									
c Critical Lane Group												

	۶	→	•	•	—	•	•	†	~	\	↓	✓
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		†			ર્ન						नांकि	
Traffic Volume (vph)	0	17	54	114	187	0	0	0	0	195	1048	204
Future Volume (vph)	0	17	54	114	187	0	0	0	0	195	1048	204
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		4.5			4.5						4.5	
Lane Util. Factor		1.00			1.00						0.86	
Frpb, ped/bikes		0.98			1.00						0.99	
Flpb, ped/bikes		1.00			1.00						0.99	
Frt		0.90			1.00						0.98	
Flt Protected		1.00			0.98						0.99	
Satd. Flow (prot)		1640			1820						6128	
Flt Permitted		1.00			0.82						0.99	
Satd. Flow (perm)	0.70	1640	0.70	0.07	1521	0.07	0.00	0.00	0.00	0.04	6128	0.04
Peak-hour factor, PHF	0.72	0.72	0.72	0.86	0.86	0.86	0.92	0.92	0.92	0.94	0.94	0.94
Adj. Flow (vph)	0	24	75	133	217	0	0	0	0	207	1115	217
RTOR Reduction (vph) Lane Group Flow (vph)	0	24 75	0	0	0 350	0	0	0	0	0	16 1523	0
Confl. Peds. (#/hr)	15	75	7	7	330	15	U	U	U	16	1523	14
Turn Type	10	NA		Perm	NA	10				Perm	NA	14
Protected Phases		1NA 4		Pellii	NA 8					Pellii	2	
Permitted Phases		4		8	Ü					2	2	
Actuated Green, G (s)		34.0		U	34.0					2	77.0	
Effective Green, g (s)		34.0			34.0						77.0	
Actuated g/C Ratio		0.28			0.28						0.64	
Clearance Time (s)		4.5			4.5						4.5	
Vehicle Extension (s)		3.0			3.0						3.0	
Lane Grp Cap (vph)		464			430						3932	
v/s Ratio Prot		0.05										
v/s Ratio Perm					c0.23						0.25	
v/c Ratio		0.16			0.81						0.39	
Uniform Delay, d1		32.3			40.1						10.3	
Progression Factor		1.04			1.18						0.97	
Incremental Delay, d2		0.2			10.5						0.3	
Delay (s)		33.8			57.8						10.2	
Level of Service		С			Е						В	
Approach Delay (s)		33.8			57.8			0.0			10.2	
Approach LOS		С			E			Α			В	
Intersection Summary												
HCM 2000 Control Delay			19.7	Н	CM 2000	Level of	Service		В			
HCM 2000 Volume to Capaci	ty ratio		0.52									
Actuated Cycle Length (s)			120.0		um of los				9.0			
Intersection Capacity Utilization	on		52.1%	IC	CU Level	of Service			Α			
Analysis Period (min)			15									
c Critical Lane Group												

	۶	→	*	•	←	4	1	†	/	/	+	√
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	₽			4			4				
Traffic Volume (vph)	85	142	86	11	195	89	53	44	21	0	0	0
Future Volume (vph)	85	142	86	11	195	89	53	44	21	0	0	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	4.5	4.5			4.5			4.5				
Lane Util. Factor	1.00	1.00			1.00			1.00				
Frpb, ped/bikes	1.00	0.91			0.93			0.99				
Flpb, ped/bikes	0.88	1.00			0.99			0.99				
Frt	1.00	0.94			0.96			0.98				
Flt Protected	0.95	1.00			1.00			0.98				
Satd. Flow (prot)	1549	1601			1647			1744				
Flt Permitted	0.55	1.00			0.99			0.98				
Satd. Flow (perm)	896	1601			1628			1744				
Peak-hour factor, PHF	0.77	0.77	0.77	0.90	0.90	0.90	0.85	0.85	0.85	0.92	0.92	0.92
Adj. Flow (vph)	110	184	112	12	217	99	62	52	25	0	0	0
RTOR Reduction (vph)	0	37	0	0	26	0	0	0	0	0	0	0
Lane Group Flow (vph)	110	259	0	0	302	0	0	139	0	0	0	0
Confl. Peds. (#/hr)	134		131	131		134	9		30			
Turn Type	Perm	NA		Perm	NA		Perm	NA				
Protected Phases	Ā	4		•	8			2				
Permitted Phases	4	00.5		8	00.5		2	04.5				
Actuated Green, G (s)	29.5	29.5			29.5			21.5				
Effective Green, g (s)	29.5	29.5			29.5			21.5				
Actuated g/C Ratio	0.49	0.49			0.49			0.36				
Clearance Time (s)	4.5	4.5			4.5			4.5				
Vehicle Extension (s)	3.0	3.0			3.0			3.0				
Lane Grp Cap (vph)	440	787			800			624				
v/s Ratio Prot	0.10	0.16			-0.10			0.00				
v/s Ratio Perm	0.12	0.22			c0.19			0.08				
v/c Ratio	0.25	0.33			0.38			0.22				
Uniform Delay, d1	8.8	9.3			9.5			13.4				
Progression Factor	1.00	1.00			1.00 1.4			1.10				
Incremental Delay, d2	1.4 10.2	1.1 10.4			10.9			0.8 15.6				
Delay (s) Level of Service	10.2 B	10.4 B			10.9 B			15.0 B				
Approach Delay (s)	D	10.3			10.9			15.6			0.0	
Approach LOS		В			В			В			Α	
Intersection Summary												
HCM 2000 Control Delay			11.4	H	CM 2000	Level of	Service		В			
HCM 2000 Volume to Capaci	city ratio		0.31									
Actuated Cycle Length (s)			60.0		um of los				9.0			
Intersection Capacity Utiliza	tion		59.9%	IC	U Level	of Service)		В			
Analysis Period (min)			15									
c Critical Lane Group												

	۶	→	•	•	←	4	1	†	/	/	+	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		र्स			1>			साकि				
Traffic Volume (vph)	152	146	0	0	127	215	124	1195	153	0	0	0
Future Volume (vph)	152	146	0	0	127	215	124	1195	153	0	0	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		4.5			4.5			4.5				
Lane Util. Factor		1.00			1.00			0.86				
Frpb, ped/bikes		1.00			0.98			0.97				
Flpb, ped/bikes		1.00			1.00			0.98				
Frt		1.00			0.92			0.98				
Flt Protected		0.98			1.00			1.00				
Satd. Flow (prot)		1816			1662			5975				
Flt Permitted		0.42			1.00			1.00				
Satd. Flow (perm)		791			1662			5975				
Peak-hour factor, PHF	0.92	0.92	0.92	0.84	0.84	0.84	0.88	0.88	0.88	0.92	0.92	0.92
Adj. Flow (vph)	165	159	0	0	151	256	141	1358	174	0	0	0
RTOR Reduction (vph)	0	0	0	0	3	0	0	13	0	0	0	0
Lane Group Flow (vph)	0	324	0	0	404	0	0	1660	0	0	0	0
Confl. Peds. (#/hr)				25		14	69		82			
Turn Type	Perm	NA			NA		Perm	NA				
Protected Phases		4			8			2				
Permitted Phases	4						2					
Actuated Green, G (s)		48.5			48.5			62.5				
Effective Green, g (s)		48.5			48.5			62.5				
Actuated g/C Ratio		0.40			0.40			0.52				
Clearance Time (s)		4.5			4.5			4.5				
Vehicle Extension (s)		3.0			3.0			3.0				
Lane Grp Cap (vph)		319			671			3111				
v/s Ratio Prot					0.24							
v/s Ratio Perm		c0.41						0.28				
v/c Ratio		1.02			0.60			0.53				
Uniform Delay, d1		35.8			28.2			19.1				
Progression Factor		1.13			1.00			1.00				
Incremental Delay, d2		49.8			1.5			0.7				
Delay (s)		90.3			29.7			19.7				
Level of Service		F			С			В				
Approach Delay (s)		90.3			29.7			19.7			0.0	
Approach LOS		F			С			В			Α	
Intersection Summary												
HCM 2000 Control Delay			30.9	Н	CM 2000	Level of	Service		С			
HCM 2000 Volume to Capac	ity ratio		0.74									
Actuated Cycle Length (s)			120.0		um of los				9.0			
Intersection Capacity Utilizati	ion		70.4%	IC	CU Level	of Service	9		С			
Analysis Period (min)			15									
c Critical Lane Group												

	۶	→	*	•	←	4	1	†	<i>></i>	>	Ţ	✓
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		†			र्स						नााः	
Traffic Volume (vph)	0	93	208	214	110	0	0	0	0	201	1266	99
Future Volume (vph)	0	93	208	214	110	0	0	0	0	201	1266	99
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		4.5			4.5						4.5	
Lane Util. Factor		1.00			1.00						0.86	
Frpb, ped/bikes		0.98			1.00						0.99	
Flpb, ped/bikes		1.00			1.00						0.99	
Frt		0.91			1.00						0.99	
Flt Protected		1.00			0.97						0.99	
Satd. Flow (prot)		1659			1796						6184	
Flt Permitted		1.00			0.50						0.99	
Satd. Flow (perm)	0.00	1659	0.00	0.70	921	0.70	0.00	0.00	0.00	0.04	6184	0.04
Peak-hour factor, PHF	0.80	0.80	0.80	0.72	0.72	0.72	0.92	0.92	0.92	0.84	0.84	0.84
Adj. Flow (vph)	0	116	260	297	153	0	0	0	0	239	1507 8	118
RTOR Reduction (vph)	0	275	0	0	0 450	0	0	0	0	0	1856	0
Lane Group Flow (vph) Confl. Peds. (#/hr)	0 26	375	7	7	450	0 26	U	0	0	0 32	1000	0 22
	20	NA	1		NA	20					NA	
Turn Type Protected Phases		NA 4		Perm	NA 8					Perm	NA 2	
Permitted Phases		4		8	0					2	Z	
Actuated Green, G (s)		63.3		0	63.3						47.7	
Effective Green, g (s)		63.3			63.3						47.7	
Actuated g/C Ratio		0.53			0.53						0.40	
Clearance Time (s)		4.5			4.5						4.5	
Vehicle Extension (s)		3.0			3.0						3.0	
Lane Grp Cap (vph)		875			485						2458	
v/s Ratio Prot		0.23			100						2100	
v/s Ratio Perm		0.20			c0.49						0.30	
v/c Ratio		0.43			0.93						0.76	
Uniform Delay, d1		17.3			26.2						31.1	
Progression Factor		0.96			1.02						0.93	
Incremental Delay, d2		0.3			23.6						2.2	
Delay (s)		16.9			50.2						31.0	
Level of Service		В			D						С	
Approach Delay (s)		16.9			50.2			0.0			31.0	
Approach LOS		В			D			Α			С	
Intersection Summary												
HCM 2000 Control Delay			32.2	Н	CM 2000	Level of	Service		С			
HCM 2000 Volume to Capacit	y ratio		0.85									
Actuated Cycle Length (s)			120.0		um of los				9.0			
Intersection Capacity Utilization	n		70.3%	IC	CU Level	of Service	9		С			
Analysis Period (min)			15									
c Critical Lane Group												

	۶	→	•	•	←	•	1	†	/	/	Ţ	-√
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	₽			4			₩.				
Traffic Volume (vph)	200	250	85	11	401	139	85	115	76	0	0	0
Future Volume (vph)	200	250	85	11	401	139	85	115	76	0	0	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	4.5	4.5			4.5			4.5				
Lane Util. Factor	1.00	1.00			1.00			1.00				
Frpb, ped/bikes	1.00	0.86			0.86			0.95				
Flpb, ped/bikes	0.82	1.00			0.99			0.98				
Frt	1.00	0.96			0.97			0.96				
Flt Protected	0.95	1.00			1.00			0.98				
Satd. Flow (prot)	1455	1542			1538			1653				
Flt Permitted	0.39	1.00			0.99			0.98				
Satd. Flow (perm)	598	1542			1528			1653				
Peak-hour factor, PHF	0.96	0.96	0.96	0.91	0.91	0.91	0.88	0.88	0.88	0.92	0.92	0.92
Adj. Flow (vph)	208	260	89	12	441	153	97	131	86	0	0	0
RTOR Reduction (vph)	0	21	0	0	20	0	0	0	0	0	0	0
Lane Group Flow (vph)	208	328	0	0	586	0	0	314	0	0	0	0
Confl. Peds. (#/hr)	396		409	409		396	38		90			
Heavy Vehicles (%)	2%	2%	2%	2%	2%	3%	2%	2%	2%	2%	2%	2%
Turn Type	Perm	NA		Perm	NA		Perm	NA				
Protected Phases		4			8			2				
Permitted Phases	4			8			2					
Actuated Green, G (s)	32.5	32.5			32.5			18.5				
Effective Green, g (s)	32.5	32.5			32.5			18.5				
Actuated g/C Ratio	0.54	0.54			0.54			0.31				
Clearance Time (s)	4.5	4.5			4.5			4.5				
Vehicle Extension (s)	3.0	3.0			3.0			3.0				
Lane Grp Cap (vph)	323	835			827			509				
v/s Ratio Prot		0.21										
v/s Ratio Perm	0.35				c0.38			0.19				
v/c Ratio	0.64	0.39			0.71			0.62				
Uniform Delay, d1	9.7	8.0			10.2			17.7				
Progression Factor	1.00	1.00			1.00			0.96				
Incremental Delay, d2	9.5	1.4			5.1			5.4				
Delay (s)	19.2	9.4			15.3			22.5				
Level of Service	В	Α			В			С				
Approach Delay (s)		13.1			15.3			22.5			0.0	
Approach LOS		В			В			С			Α	
Intersection Summary												
HCM 2000 Control Delay			16.0	Н	CM 2000	Level of	Service		В			
HCM 2000 Volume to Capa	acity ratio		0.67									
Actuated Cycle Length (s)			60.0	S	um of lost	time (s)			9.0			
Intersection Capacity Utiliza	ation		81.4%			of Service	;		D			
Analysis Period (min)			15									

c Critical Lane Group

Appendix HRaw Traffic Count Data

Project ID: 16-9175-002

Location: Spring St & Armstead PI_Georgia Tech Parking Deck Entrance
City: Atlanta

Day: Tuesday Date: 4/12/2016

Peak S	tart Times
AM	7:00 AM
MD	12:00 AM
PM	4:00 PM

Groups Printed - Cars, PU, Vans - Heavy Trucks

		S	pring S	it				Spring S	St		ad PI_C	eorgia	Tech P	arking	Deck E	ead Pl_0	Georgia T	ech Pa	rking C	eck En	
		No	rthbou	nd			So	uthbou				E	astbour				We	stboun			
Start Time	Left	Thru	Rgt	Peds A	op. Total	Left	Thru	Rgt	Peds .		Left	Thru	Rgt	Peds .	App. Total	Left	Thru	Rgt	Peds	App. Total	Int. Total
7:00 AM	0	0	0	1	0	7	159	23	10	189	0	0	0	0	0	1	4	0	1	5	194
7:15 AM	0	0	0	0	0	12	162	21	17	195	0	0	4	0	4	4	5	0	5	9	208
7:30 AM	0	0	0	0	0	12	219	32	15	263	0	1	1	0	2	1	6	0	1	7	272
7:45 AM	0	0	0	0	0	13	215	34	32	262	0	1	1	0	2	5	6	0	6	11	275
Total	0	0	0	1	0	44	755	110	74	909	0	2	6	0	8	11	21	0	13	32	949
8:00 AM	0	0	0	0	0	12	238	19	31	269	0	0	2	0	2	3	9	0	2	12	283
8:15 AM	0	0	0	0	0	15	289	19	14	323	0	0	1	0	1	0	2	0	2	2	326
8:30 AM	0	0	0	0	0	17	267	15	19	299	0	1	1	0	2	0	2	0	3	2	303
8:45 AM	0	0	0	0	0	16	294	19	10	329	0	1	3	0	4	4	3	0	3	7	340
Total	0	0	0	0	0	60	1088	72	74	1220	0	2	7	0	9	7	16	0	10	23	1252
BREAK																					
4:00 PM	0	0	0	0	0	5	382	13	33	400	0	11	7	0	18	3	4	0	1	7	425
4:15 PM	0	0	0	2	0	19	291	13	54	323	0	3	3	1	6	4	4	0	3	8	337
4:30 PM	0	0	0	1	0	12	310	15	52	337	0	18	10	0	28	5	3	0	4	8	373
4:45 PM	0	0	0	0	0	8	239	12	31	259	0	9	13	0	22	4	4	0	1	8	289
Total	0	0	0	3	0	44	1222	53	170	1319	0	41	33	1	74	16	15	0	9	31	1424
5:00 PM	0	0	0	0	0	10	336	19	34	365	0	6	2	0	8	9	3	0	7	12	385
5:15 PM	0	0	0	0	0	10	234	19	43	263	0	17	11	0	28	4	10	0	3	14	305
5:30 PM	0	0	0	1	0	15	257	25	55	297	0	10	6	0	16	8	8	0	6	16	329
5:45 PM	0	0	0	0	0	4	334	34	67	372	0	17	8	0	25	3	7	0	6	10	
Total	0	0	0	1	0	39	1161	97	199	1297	0	50	27	0	77	24	28	0	22	52	1426
Grand Total		0	0	-	ام	187	4226	332	517	4745		95	73	4	400	58	80	0	54	420	5051
	0.0	0.0	0.0	5 0.0	0	3.9	89.1	7.0	10.9	4/45	0.0	56.5	43.5	1 0.6	168	42.0	58.0	0.0	39.1	138	5051
Apprch % Total %	0.0	0.0	0.0	0.0	0.0	3.9	83.7	6.6	10.9	93.9	0.0	1.9	43.5	0.0	3.3	42.0 1.1	1.6	0.0	1.1	2.7	
Cars, PU, Vans	0.0	0.0	0.0	5	0.0	187	4151	332	517	4670	0.0	95	73	1	168	58	80	0.0	54	138	4976
% Cars, PU, Vans	0.0	0.0	0.0	100.0	0.0	100.0	98.2	100.0	100.0	98.4	0.0	100.0	100.0	100.0	100.0	100.0	100.0	0.0		100.0	
Heavy Trucks	0	0	0		0	0	75	0		75	0	0	0		0	0	0	0		0	75
%Heavy Trucks	0.0	0.0	0.0	0.0	0.0	0.0	1.8	0.0	0.0	1.6	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	

Project ID: 16-9175-002 Location: Spring St & Armstead PI_Ge City: Atlanta

PEAK HOURS

AM																	
		Sprii	ng St			Sprin	g St		PI_Geo	gia Tecl	h Parki	ng Dec	PI_Geor	rgia Te	ch Parki	ng Dec	
		North	bound			Southb	ound			Eastbo	ound			West	bound		
Start Time	Left	Thru	Rgt	App. Total	Left	Thru	Rgt	App. Total	Left	Thru	Rgt	App. Total	Left	Thru	Rgt	App. Total	Int. Total
Peak Hour Analys	sis from	07:00 /	AM to 0	9:00 AM													
Peak Hour for En	tire Inte	rsection	Begins	at 08:0	0 AM												
8:00 AM	0	0	0	0	12	238	19	269	0	0	2	2	3	9	0	12	283
8:15 AM	0	0	0	0	15	289	19	323	0	0	1	1	0	2	0	2	326
8:30 AM	0	0	0	0	17	267	15	299	0	1	1	2	0	2	0	2	303
8:45 AM	0	0	0	0	16	294	19	329	0	1	3	4	4	3	0	7	340
Total Volume	0	0	0	0	60	1088	72	1220	0	2	7	9	7	16	0	23	1252
% App. Total	0.0	0.0	0.0	0	4.9	89.2	5.9	100	0.0	22.2	77.8	100	30.4	69.6	0.0	100	
PHF				0.000				0.927				0.563				0.479	
Cars, PU, Vans	0	0	0	0	60	1072	72	1204	0	2	7	9	7	16	0	23	1236
% Cars, PU, Vans	0.0	0.0	0.0	0.0	100.0	98.5	100.0	98.7	0.0	100.0	100.0	100.0	100.0	100.0	0.0	100.0	98.7
Heavy Trucks	0	0	0	0	0	16	0	16	0	0	0	0	0	0	0	0	16
%Heavy Trucks	0.0	0.0	0.0	0.0	0.0	1.5	0.0	1.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.3

PM																	
		Sprir	ng St			Sprin	g St		PI_Geo	rgia Tecl	h Parki	ng Dec	PI_Geor	rgia Teo	ch Parki	ng Dec	
		Northi	bound			Southb	ound			Eastbo	ound			Westl	oound		
Start Time	Left	Thru	Rgt	App. Total	Left	Thru	Rgt	App. Total	Left	Thru	Rgt	App. Total	Left	Thru	Rgt	App. Total	Int. Total
Peak Hour Analys	sis from	04:00 F	PM to 0	6:00 PM													
Peak Hour for En	tire Inte	rsection	Begins	at 05:0	0 PM												
5:00 PM	0	0	0	0	10	336	19	365	0	6	2	8	9	3	0	12	385
5:15 PM	0	0	0	0	10	234	19	263	0	17	11	28	4	10	0	14	305
5:30 PM	0	0	0	0	15	257	25	297	0	10	6	16	8	8	0	16	329
5:45 PM	0	0	0	0	4	334	34	372	0	17	8	25	3	7	0	10	407
Total Volume	0	0	0	0	39	1161	97	1297	0	50	27	77	24	28	0	52	1426
% App. Total	0.0	0.0	0.0	0	3.0	89.5	7.5	100	0.0	64.9	35.1	100	46.2	53.8	0.0	100	
PHF				0.000				0.872				0.688				0.813	
Cars, PU, Vans	0	0	0	0	39	1143	97	1279	0	50	27	77	24	28	0	52	1408
% Cars, PU, Vans	0.0	0.0	0.0	0.0	100.0	98.4	100.0	98.6		100.0	100.0	100.0	100.0	100.0	0.0	100.0	98.7
Heavy Trucks	0	0	0	0	0	18	0	18	0	0	0	0	0	0	0	0	18
%Heavy Trucks	0.0	0.0	0.0	0.0	0.0	1.6	0.0	1.4	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.3

Project ID: 16-9175-003 Location: West Peachtree St & Armstead Pl City: Atlanta

Day: Tuesday Date: 4/12/2016

Peak S	tart Times
AM	7:00 AM
MD	12:00 AM
PM	4:00 PM

Groups Printed - Cars, PU, Vans - Heavy Trucks

		West	Peacht	ree St				Peacht	ree St		I 0, ru		mstead				Arm	stead	PI		
			rthbou					uthbou					astbou					stboun			
Start Time	Left	Thru		Peds	App. Total	Left	Thru	Rgt	Peds	App. Total	Left	Thru	Rgt		App. Total	Left	Thru			App. Total	Int. Total
7:00 AM	6	161	0	0	167	0	0	0	0	0	5	0	0	5	5	0	0	0	0		172
7:15 AM	7	209	0	0	216	0	0	0	1	0	11	0	0	7	11	0	0	0	0	0	227
7:30 AM	7	261	0	1	268	0	0	0	0	0	11	0	0	11	11	0	0	0	0	0	279
7:45 AM	12	271	0	3	283	0	0	0	0	0	13	0	0	7	13	0	0	0	0	0	296
Total	32	902	0	4	934	0	0	0	1	0	40	0	0	30	40	0	0	0	0	0	974
8:00 AM	13	324	0	0	337	0	0	0	0	0	7	0	0	10	7	0	0	0	0	0	344
8:15 AM	2	325	0	0	327	0	0	0	1	0	11	0	0	19	11	0	0	0	0	0	338
8:30 AM	2	324	0	0	326	0	0	0	1	0	20	0	0	12	20	0	0	0	0	0	346
8:45 AM	7	300	0	0	307	0	0	0	0	0	16	0	0	12	16	0	0	0	0	0	323
Total	24	1273	0	0	1297	0	0	0	2	0	54	0	0	53	54	0	0	0	0	0	1351
BREAK																					
4:00 PM	8	252	0	3	260	0	0	0	0	0	14	0	0	15	14	0	0	0	0	0	274
4:15 PM	6	292	0	3	298	0	0	0	2	0	24	0	0	13	24	0	0	0	0	0	322
4:30 PM	11	311	0	1	322	0	0	0	0	0	27	0	0	17	27	0	0	0	0	0	349
4:45 PM	7	270	0	1	277	0	0	0	0	0	19	0	0	27	19	0	0	0	0	0	296
Total	32	1125	0	8	1157	0	0	0	2	0	84	0	0	72	84	0	0	0	0	0	1241
5:00 PM	12	295	0	1	307	0	0	0	0	0	18	0	0	19	18	0	0	0	0	0	325
5:15 PM	14	377	0	0	391	0	0	0	0	0	26	0	0	20	26	0	0	0	0	0	417
5:30 PM	16	381	0	0	397	0	0	0	0	0	24	0	0	25	24	0	0	0	0	0	421
5:45 PM	10	323	0	0	333	0	0	0	0	0	23	0	0	11	23	0	0	0	0	0	356
Total	52	1376	0	1	1428	0	0	0	0	0	91	0	0	75	91	0	0	0	0	0	1519
Grand Total	140	4676	0	13	4816	0	0	0	5	0	269	0	0	230	269	0	0	0	0	0	5085
Apprch %	2.9	97.1	0.0	0.3	4010	0.0	0.0	0.0	0.0	U	100.0	0.0	0.0	85.5	203	0.0	0.0	0.0	0.0	U	5555
Total %	2.8	92.0	0.0	0.3	94.7	0.0	0.0	0.0	0.0	0.0		0.0	0.0	4.5	5.3	0.0	0.0	0.0	0.0	0.0	
Cars, PU, Vans	140	4563	0	13	4703	0	0	0	5	0	269	0	0	230	269	0	0	0	0	0	4972
% Cars, PU, Vans	100.0	97.6	0.0	100.0	97.7	0.0	0.0	0.0	100.0	0.0	100.0	0.0	0.0	100.0	100.0	0.0	0.0	0.0	0.0	0.0	97.8
Heavy Trucks	0	113	0		113	0	0	0		0	0	0	0		0	0	0	0		0	113
%Heavy Trucks	0.0	2.4	0.0	0.0	2.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2.2

Project ID: 16-9175-003 Location: West Peachtree St & Armste City: Atlanta

PEAK HOURS

AM																		
	We	est Pea	chtree \$	St	W	est Peac	htree	St		Armste	ad Pl			Armst	ead Pl			
		Northi	oound			Southb	ound			Eastb	ound			Westl	oound			
Start Time	Left	Thru	Rgt	App. Total	Left	Thru	Rgt	App. Total	Left	Thru	Rgt	App. Total	Left	Thru	Rgt	App. Total	Int. To	tal
Peak Hour Analys	sis from	07:00	AM to 09	:00 AM														
Peak Hour for En	tire Inter	section	Begins	at 08:0	0 AM													
8:00 AM	13	324	0	337	0	0	0	0	7	0	0	7	0	0	0	0	3	44
8:15 AM	2	325	0	327	0	0	0	0	11	0	0	11	0	0	0	0	3	38
8:30 AM	2	324	0	326	0	0	0	0	20	0	0	20	0	0	0	0	3	46
8:45 AM	7	300	0	307	0	0	0	0	16	0	0	16	0	0	0	0	3	23
Total Volume	24	1273	0	1297	0	0	0	0	54	0	0	54	0	0	C	0	13	51
% App. Total	1.9	98.1	0.0	100	0.0	0.0	0.0	0	100.0	0.0	0.0	100	0.0	0.0	0.0	0		
PHF				0.962				0.000				0.675				0.000		
Cars, PU, Vans	24	1246	0	1270	0	0	0	0	54	0	0	54	0	0	C	0	13:	24
% Cars, PU, Vans	100.0	97.9	0.0	97.9	0.0	0.0	0.0	0.0	100.0	0.0	0.0	100.0	0.0	0.0	0.0	0.0	98	8.0
Heavy Trucks	0	27	0	27	0	0	0	0	0	0	0	0	0	0	C	0		27
%Heavy Trucks	0.0	2.1	0.0	2.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2	2.0

PM																		
	We	est Pea	chtree	St	We	est Peac	htree	St		Armste	ad Pl			Armst	ead Pl		1	
		North	bound			Southb	ound			Eastb	ound			West	oound			
Start Time	Left	Thru	Rgt	App. Total	Left	Thru	Rgt	App. Total	Left	Thru	Rgt	App. Total	Left	Thru	Rgt	App. Total	Int. T	otal
Peak Hour Analys	sis from	04:00 F	PM to 0	6:00 PM		-												
Peak Hour for En	tire Inter	section	Begins	at 05:0	0 PM													
5:00 PM	12	295	0	307	0	0	0	0	18	0	0	18	0	0	0	0		325
5:15 PM	14	377	0	391	0	0	0	0	26	0	0	26	0	0	0	0	İ	417
5:30 PM	16	381	0	397	0	0	0	0	24	0	0	24	0	0	0	0	İ	421
5:45 PM	10	323	0	333	0	0	0	0	23	0	0	23	0	0	0	0	İ	356
Total Volume	52	1376	0	1428	0	0	0	0	91	0	0	91	0	0	0	0	1	1519
% App. Total	3.6	96.4	0.0	100	0.0	0.0	0.0	0	100.0	0.0	0.0	100	0.0	0.0	0.0	0		
PHF				0.899				0.000				0.875				0.000		
Cars, PU, Vans	52	1353	0	1405	0	0	0	0	91	0	0	91	0	0	0	0	1	1496
% Cars, PU, Vans	100.0	98.3	0.0	98.4	0.0	0.0	0.0	0.0	100.0	0.0	0.0	100.0	0.0	0.0	0.0	0.0	9	98.5
Heavy Trucks	0	23	0	23	0	0	0	0	0	0	0	0	0	0	0	0		23
%Heavy Trucks	0.0	1.7	0.0	1.6	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		1.5

Day: Tuesday Date: 4/12/2016

Peak S	tart Times
AM	7:00 AM
MD	12:00 AM
PM	4:00 PM

Groups Printed - Cars, PU, Vans - Heavy Trucks

		West	Peacht	ree St				Peacht		ı - Cars,	. c, vu		4th St					4th St			
		No	rthbou	nd			So	uthbou	ınd			E	astbou	nd			We	stboun	d		
Start Time	Left	Thru	Rgt	Peds	App. Total	Left	Thru	Rgt	Peds	App. Total	Left	Thru	Rgt	Peds A	pp. Total	Left	Thru	Rgt	Peds	App. Total	Int. Total
7:00 AM	30	195	0	1	225	0	0	0	2		0	0	0		0	0	9	8	6	17	242
7:15 AM	36	249	0	1	285	0	0	0	1	0	0	0	0	9	0	0	17	7	9	24	309
7:30 AM	32	303	0	3	335	0	0	0	1	0	0	0	0	11	0	0	13	11	16		359
7:45 AM	37	326	0	2	363	0	0	0	0	0	0	0	0		0	0	16	19	19		398
Total	135	1073	0	7	1208	0	0	0	4	0	0	0	0	33	0	0	55	45	50	100	1308
8:00 AM	36	358	0	1	394	0	0	0	3	0	0	0	0	14	0	0	22	26	19	48	442
8:15 AM	27	379	0	5	406	0	0	0	5	0	0	0	0	20	0	0	21	13	11	34	440
8:30 AM	34	364	0	3	398	0	0	0	3	0	0	0	0	9	0	0	23	15	10	38	436
8:45 AM	28	331	0	6	359	0	0	0	9	0	0	0	0		0	0	16	22	15		397
Total	125	1432	0	15	1557	0	0	0	20	0	0	0	0	58	0	0	82	76	55	158	1715
BREAK																					
4:00 PM	22	205	0	13	227	0	0	0	6	0	0	0	0		0	0	40	42	18		
4:15 PM	25	235	0	5	260	0	0	0	3	0	0	0	0		0	0	29	53	15		342
4:30 PM	18	243	0	11	261	0	0	0	4	0	0	0	0		0	0	23	62	17	85	346
4:45 PM	18	222	0	3	240	0	0	0	9	0	0	0	0		0	0	25	39	19		304
Total	83	905	0	32	988	0	0	0	22	0	0	0	0	57	0	0	117	196	69	313	1301
5:00 PM	22	222	0	5	244	0	0	0	3	0	0	0	0		0	0	31	63	32		338
5:15 PM	17	333	0	11	350	0	0	0	5	0	0	0	0		0	0	22	51	16		-
5:30 PM	11	339	0	4	350	0	0	0	2	0	0	0	0		0	0	38	46	15	84	434
5:45 PM	18	273	0	5	291	0	0	0	4	0	0	0	0		0	0	18	48	19		357
Total	68	1167	0	25	1235	0	0	0	14	0	0	0	0	69	0	0	109	208	82	317	1552
Grand Total	411	4577	0	79	4988	0	0	0	60	0	0	0	0		0	0	363	525	256		5876
Apprch %	8.2	91.8	0.0	1.6		0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0		0.0	40.9	59.1	28.8		
Total %	7.0	77.9	0.0	1.3	84.9	0.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0		0.0	0.0	6.2	8.9	4.4		
Cars, PU, Vans	410	4463	0	79	4873	0	0	0	60	0	0	0	0		0	0	361	525	256	886	5759
% Cars, PU, Vans	99.8	97.5	0.0	100.0	97.7	0.0	0.0	0.0	100.0	0.0	0.0	0.0	0.0		0.0	0.0	99.4	100.0	100.0		
Heavy Trucks	1	114	0		115	0	0	0		0	0	0	0		0	0	2	0		2	117
%Heavy Trucks	0.2	2.5	0.0	0.0	2.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.6	0.0	0.0	0.2	2.0

Project ID: 16-9175-004 Location: West Peachtree St & 4th St City: Atlanta

PEAK HOURS

AM																	
	We	st Pea	chtree \$	St	We	est Peac	htree	St		4th	St			4th	St		
		Northi	oound			Southb	ound			Eastb	ound			Westk	ound		
Start Time	Left	Thru	Rgt	App. Total	Left	Thru	Rgt	App. Total	Left	Thru	Rgt	App. Total	Left	Thru	Rgt	App. Total	Int. Total
Peak Hour Analys	sis from	07:00	AM to 09	:00 AM													
Peak Hour for En	tire Inter	section	Begins	at 07:4	5 AM												
7:45 AM	37	326	0	363	0	0	0	0	0	0	0	0	0	16	19	35	398
8:00 AM	36	358	0	394	0	0	0	0	0	0	0	0	0	22	26	48	442
8:15 AM	27	379	0	406	0	0	0	0	0	0	0	0	0	21	13	34	440
8:30 AM	34	364	0	398	0	0	0	0	0	0	0	0	0	23	15	38	436
Total Volume	134	1427	0	1561	0	0	0	0	0	0	0	0	0	82	73	155	1716
% App. Total	8.6	91.4	0.0	100	0.0	0.0	0.0	0	0.0	0.0	0.0	0	0.0	52.9	47.1	100	
PHF				0.961				0.000				0.000				0.807	
Cars, PU, Vans	134	1397	0	1531	0	0	0	0	0	0	0	0	0	81	73	154	1685
% Cars, PU, Vans	100.0	97.9	0.0	98.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	98.8	100.0	99.4	98.2
Heavy Trucks	0	30	0	30	0	0	0	0	0	0	0	0	0	1	0	1	31
%Heavy Trucks	0.0	2.1	0.0	1.9	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.2	0.0	0.6	1.8

PIVI																		
	We	est Pea	chtree	St	W	est Peac	htree	St		4th	St			4th	St			
		North	bound			Southb	ound			Eastb	ound			Westk	oound			
Start Time	Left	Thru	Rgt	App. Total	Left	Thru	Rgt	App. Total	Left	Thru	Rgt	App. Total	Left	Thru	Rgt	App. Total	Int.	Total
Peak Hour Analys	sis from	04:00 I	PM to 06	6:00 PM														
Peak Hour for En	tire Inter	section	Begins	at 05:0	0 PM													
5:00 PM	22	000		044				ام						04	-00	0.4	1	000
		222	0	244	0	0	0		0	0	0	-	0	31	63	94		338
5:15 PM	17	333	0	350	0	0	0	0	0	0	0	0	0	22	51	73	l	423
5:30 PM	11	339	0	350	0	0	0	0	0	0	0	0	0	38	46	84		434
5:45 PM	18	273	0	291	0	0	0	0	0	0	0	0	0	18	48	66		357
Total Volume	68	1167	0	1235	0	0	0	0	0	0	0	0	0	109	208	317		1552
% App. Total	5.5	94.5	0.0	100	0.0	0.0	0.0	0	0.0	0.0	0.0	0	0.0	34.4	65.6	100		
PHF				0.882				0.000				0.000				0.843		
Cars, PU, Vans	68	1144	0	1212	0	0	0	0	0	0	0	0	0	109	208	317		1529
% Cars, PU, Vans	100.0	98.0	0.0	98.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	100.0	100.0	100.0	Ш	98.5
Heavy Trucks	0	23	0	23	0	0	0	0	0	0	0	0	0	0	0	0		23
%Heavy Trucks	0.0	2.0	0.0	1.9	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	l	1.5

Project ID: 16-9175-005 Location: Spring St & 4th St City: Atlanta

Day: Tuesday Date: 4/12/2016

Peak S	tart Times
AM	7:00 AM
MD	12:00 AM
PM	4:00 PM

Groups Printed - Cars, PU, Vans - Heavy Trucks

		S	pring S	St	I			pring S		i - Cars,	. 0 , ru		4th St					4th St			
			rthbou					uthbou				E	astbou	nd			We	stboun	d		
Start Time	Left	Thru	Rgt	Peds Ap	op. Total	Left	Thru	Rgt	Peds	App. Total	Left	Thru	Rgt	Peds /	App. Total	Left	Thru	Rgt	Peds	App. Total	Int. Total
7:00 AM	0	0	0	2	0	0	143	11	5	154	0	0	7	0	7	33	15	0	4	48	209
7:15 AM	0	0	0	2	0	0	169	7	7	176	0	0	3	3	3	22	15	0	4	37	216
7:30 AM	0	0	0	2	0	0	202	13	1	215	0	0	12	4	12	28	17	0	4	45	272
7:45 AM	0	0	0	3	0	0	214	13	6	227	0	0	9	8	9	26	28	0	1	54	290
Total	0	0	0	9	0	0	728	44	19	772	0	0	31	15	31	109	75	0	13	184	987
8:00 AM	0	0	0	1	0	0	224	19	2	243	0	0	9	2	9	24	35	0	1	59	311
8:15 AM	0	0	0	2	0	0	262	19	2	281	0	0	8	5	8	29	26	0	2	55	344
8:30 AM	0	0	0	1	0	0	269	10	3	279	0	0	11	1	11	22	22	0	6	44	334
8:45 AM	0	0	0	3	0	0	270	22	8	292	0	0	15	6	15	22	24	0	7	46	353
Total	0	0	0	7	0	0	1025	70	15	1095	0	0	43	14	43	97	107	0	16	204	1342
BREAK																					
4:00 PM	0	0	0	0	0	0	371	9	8	380	0	0	49	6	49	45	19	0	11	64	493
4:15 PM	0	0	0	1	0	0	294	14	6	308	0	0	32	8	32	35	14	0	3	49	
4:30 PM	0	0	0	4	0	0	310	10	9	320	0	0	49	8	49	36	7	0	13	43	
4:45 PM	0	0	0	2	0	0	254	10	3	264	0	0	26	0	26	20	8	0	5	28	318
Total	0	0	0	7	0	0	1229	43	26	1272	0	0	156	22	156	136	48	0	32	184	1612
5:00 PM	0	0	0	1	0	0	314	18	4	332	0	0	35	4	35	38	9	0	16	47	414
5:15 PM	0	0	0	0	0	0	254	10	6	264	0	0	42	8	42	30	10	0	3	40	
5:30 PM	0	0	0	4	0	0	259	11	6	270	0	0	22	3	22	39	11	0	6	50	
5:45 PM	0	0	0	2	0	0	336	13	3	349	0	0	36	6	36	36	9	0	9	45	430
Total	0	0	0	7	0	0	1163	52	19	1215	0	0	135	21	135	143	39	0	34	182	1532
Grand Total	0	0	0	30	0	0	4145	209	79	4354	0	0	365	72	365	485	269	0	95	754	5473
Apprch %	0.0	0.0	0.0	0.0		0.0	95.2	4.8	1.8		0.0	0.0	100.0	19.7		64.3	35.7	0.0	12.6		
Total %	0.0	0.0	0.0	0.5	0.0	0.0	75.7	3.8	1.4	79.6	0.0	0.0	6.7	1.3	6.7	8.9	4.9	0.0	1.7	13.8	
Cars, PU, Vans	0	0	0	30	0	0	4072	208	79	4280	0	0	365	72	365	482	269	0	95	751	5396
% Cars, PU, Vans	0.0	0.0	0.0	100.0	0.0	0.0	98.2	99.5	100.0	98.3	0.0	0.0	100.0	100.0	100.0	99.4	100.0	0.0	100.0	99.6	
Heavy Trucks	0	0	0		0	0	73	1		74	0	0	0		0	3	0	0		3	77
%Heavy Trucks	0.0	0.0	0.0	0.0	0.0	0.0	1.8	0.5	0.0	1.7	0.0	0.0	0.0	0.0	0.0	0.6	0.0	0.0	0.0	0.4	1.4

Project ID: 16-9175-005 Location: Spring St & 4th St City: Atlanta

PEAK HOURS

AIVI																	
		Sprir Northi				Sprin Southb				4th Eastbe					St oound		
Start Time	Left	Thru	Rgt	App. Total	Left	Thru	Rgt	App. Total	Left	Thru	Rgt	App. Total	Left	Thru	Rgt	App. Total	Int. Total
Peak Hour Analys	sis from	07:00 /	AM to 09	:00 AM	l												
Peak Hour for En	tire Inte	rsection	Begins	at 08:0	MA 0												
8:00 AM	0	0	0	0	0	224	19	243	0	0	9	9	24	35	0	59	311
8:15 AM	0	0	0	0	0	262	19	281	0	0	8	8	29	26	0	55	344
8:30 AM	0	0	0	0	0	269	10	279	0	0	11	11	22	22	0	44	334
8:45 AM	0	0	0	0	0	270	22	292	0	0	15	15	22	24	0	46	353
Total Volume	0	0	0	0	0	1025	70	1095	0	0	43	43	97	107	0	204	1342
% App. Total	0.0	0.0	0.0	0	0.0	93.6	6.4	100	0.0	0.0	100.0	100	47.5	52.5	0.0	100	
PHF				0.000				0.938				0.717				0.864	
Cars, PU, Vans	0	0	0	0	0	1010	70	1080	0	0	43	43	96	107	0	203	1326
% Cars, PU, Vans	0.0	0.0	0.0	0.0	0.0	98.5	100.0	98.6	0.0	0.0	100.0	100.0	99.0	100.0	0.0	99.5	98.8
Heavy Trucks	0	0	0	0	0	15	0	15	0	0	0	0	1	0	0	1	16
%Heavy Trucks	0.0	0.0	0.0	0.0	0.0	1.5	0.0	1.4	0.0	0.0	0.0	0.0	1.0	0.0	0.0	0.5	1.2

PM																	
		Sprii	ng St			Sprin	g St			4th	St			4th	n St		
		North	bound			Southb	ound			Eastb	ound			West	bound		
Start Time	Left	Thru	Rgt	App. Total	Left	Thru	Rgt	App. Total	Left	Thru	Rgt	App. Total	Left	Thru	Rgt	App. Total	Int. Total
Peak Hour Analys	sis from	04:00 I	PM to 0	6:00 PM													
Peak Hour for En	tire Inter	section	n Begin	s at 04:0	0 PM												
4:00 PM	0	0	C	0	0	371	9	380	0	0	49	49	45	19	0	64	493
4:15 PM	0	0	C	0	0	294	14	308	0	0	32	32	35	14	0	49	389
4:30 PM	0	0	C	0	0	310	10	320	0	0	49	49	36	7	0	43	412
4:45 PM	0	0	C	0	0	254	10	264	0	0	26	26	20	8	0	28	318
Total Volume	0	0	C) 0	0	1229	43	1272	0	0	156	156	136	48	0	184	1612
% App. Total	0.0	0.0	0.0	0	0.0	96.6	3.4	100	0.0	0.0	100.0	100	73.9	26.1	0.0	100	
PHF				0.000				0.837				0.796				0.719	
Cars, PU, Vans	0	0	C) 0	0	1208	43	1251	0	0	156	156	136	48	0	184	1591
% Cars, PU, Vans	0.0	0.0	0.0	0.0	0.0	98.3	100.0	98.3	0.0	0.0	100.0	100.0	100.0	100.0	0.0	100.0	98.7
Heavy Trucks	0	0	C) 0	0	21	0	21	0	0	0	0	0	0	0	0	21
%Heavy Trucks	0.0	0.0	0.0	0.0	0.0	17	0.0	17	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	13

Project ID: 16-9175-006 Location: Georgia Tech Parking Deck Entrance_Williams St & 4th St City: Atlanta

Day: Tuesday Date: 4/12/2016

 Peak Start Times

 AM
 7:00 AM

 MD
 12:00 AM

 PM
 4:00 PM

Groups Printed - Cars, PU, Vans - Heavy Trucks

	a Toch	Darkina	Dock	Entrance	Will:1	a Toch					Pu, vai	15 - He	4th St	CKS				th St			I
	a rechi		rthbou		=_vv :::112	a recn		uthbou		-e_AA IIIIS		E-	4เก อเ astbour	nd				ະເກ ວເ stboun	d		
Start Time	Left	Thru	Rat	Peds A	nn Total	Left	Thru			App. Total	Left	Thru		Peds /	Ann Total	Left	Thru	Rgt		App. Total	Int. Total
7:00 AM	0	0	0	2	рр. тока О	0	0	0	0	л. года О	0	9	0	0		2	4	0	0	лрр. гола 6	15
7:15 AM	Ö	Ö	Ö	0	Ö	Ö	Ö	1	0	1	ő	7	Ö	0	7	0	14	0	0	14	22
7:30 AM	0	0	0	1	0	1	ō	0	0	1	0	10	1	0	11	1	17	0	1	18	
7:45 AM	0	0	0	2	0	2	ō	3	2	5	0	22	0	1	22	0	19	0	1	19	
Total	0	0	0	5	0		0	4	2	7	0	48	1	1	49	3	54	0	2	57	113
8:00 AM	0	0	0	0	0	1	0	1	1	2	0	22	0	0	22	0	17	0	0	17	41
8:15 AM	0	0	0	0	0	1	0	0	0	1	0	21	0	0	21	1	15	0	0	16	38
8:30 AM	0	0	0	0	0	1	0	1	0	2	0	13	0	0	13	0	17	0	0	17	32
8:45 AM	0	0	0	1	0	2	0	4	0	6	0	12	0	0	12	1	19	0	0	20	
Total	0	0	0	1	0	5	0	6	1	11	0	68	0	0	68	2	68	0	0	70	149
BREAK																					
4:00 PM	0	0	0	4	0	18	0	19	2	37	0	18	0	0	18	0	22	0	1	22	77
4:15 PM	0	0	0	1	0	30	0	22	0	52	0	22	0	4	22	0	23	0	0	23	
4:30 PM	0	0	0	1	0	40	0	28	1	68	0	22	0	0	22	0	19	0	0	19	
4:45 PM	0	0	0	2	0	25	0	32	0	57	0	11	0	0	11	0	24	0	0	24	92
Total	0	0	0	8	0	113	0	101	3	214	0	73	0	4	73	0	88	0	1	88	375
5:00 PM	0	0	0	1	0	29	0	33	3	62	0	28	0	2	28	0	10	0	0	10	
5:15 PM	0	0	0	2	0	16	0	27	3	43	0	17	0	0	17	0	17	0	2	17	77
5:30 PM	0	0	0	0	0	23	0	21	0	44	0	20	0	0	20	0	18	0	0	18	
5:45 PM	0	0	0	3	0	17	0	17	0	34	1	31	0	1_	32	0	16	0	0	16	
Total	0	0	0	6	0	85	0	98	6	183	1	96	0	3	97	0	61	0	2	61	341
Grand Total	0	0	0	20	0	206	0	209	12	415		285	1	8	287	5	271	0	5	276	978
Apprch %	0.0	0.0	0.0	0.0		49.6	0.0	50.4	2.9		0.3	99.3	0.3	2.8		1.8	98.2	0.0	1.8		
Total %	0.0	0.0	0.0	2.0	0.0		0.0	21.4	1.2	42.4	0.1	29.1	0.1	0.8	29.3	0.5	27.7	0.0	0.5	28.2	
Cars, PU, Vans	0	0	0	20	0	206	0	209	12	415	1	285	1	8	287	5	270	0	5	275	977
% Cars, PU, Vans	0.0	0.0	0.0	100.0	0.0		0.0	100.0	100.0	100.0		100.0	100.0	100.0	100.0	100.0	99.6	0.0	100.0	99.6	
Heavy Trucks	0	0	0		0	0	0	0	_	0	0	0	0		0	0	1	0		1	1
%Heavy Trucks	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.4	0.0	0.0	0.4	0.1

Project ID: 16-9175-006 Location: Georgia Tech Parking Deck City: Atlanta

PEAK HOURS

Rgt Rgt AM to 09 n Begins 0 0 0 0 0 0		Left	Thru 0 0 0		App. Total 5 2	Left 0 0	Thru 22 22 22	Rgt 0 0	App. Total 22 22	Left 0 0	Thru 19		App. Total 19	46 41
AM to 09 n Begins 0 0	9:00 AM at 07:4	5 AM	0	3	5	0	22 22	0	22	0	19	0	19 17	46 41
n Begins 0 0 0	at 07:4	5 AM	0	1		0	22	0		-		-	17	
0 0	0		0	1		0	22	0		-		-	17	41
0	0 0 0	2 1 1	0	1		0	22	0		-		-	17	41
0	0	1	0	1		0	22	0		-		-	17	41
0	0	1	-	0	1			-	22	U	17	U		
-	0	1	0	()	11									
. 0							21	0	21	1	15	0	16	38
	0	1	0	1	2	0	13	0	13	0	17	0	17	32
0	0	5	0	5	10	0	78	0	78	1	68	0	69	157
0.0	0	50.0	0.0	50.0	100	0.0	100.0	0.0	100	1.4	98.6	0.0	100	
	0.000				0.500				0.886				0.908	
0	0	5	0	5	10	0	78	0	78	1	68	0	69	157
0.0	0.0	100.0	0.0	100.0	100.0	0.0	100.0	0.0	100.0	100.0	100.0	0.0	100.0	100.0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	0.0 0 0.0 0	0.0 0 0.000 0 0 0.0 0.0 0 0	0.0 0 50.0 0.000 0 0 5 0.0 0.0 100.0 0 0 0	0.0 0 50.0 0.0 0.000 0 0 5 0 0.0 0.0 100.0 0.0 0 0 0 0 0	0.0 0 50.0 0.0 50.0 0.000 0 0 5 0 5 0.0 0.0 100.0 0.0 100.0 0 0 0 0 0 0	0.0 0 50.0 0.0 50.0 100 0.000	0.0 0 50.0 0.0 50.0 100 0.0 0.000 0 0.500 0.500 0.500 0.0	0.0 0 50.0 0.0 50.0 100 0.0 100.0 0.000 0 5 0 5 10 0 78 0.0 0.0 100.0 0.0 100.0 100.0 0.0 100.0 0 0 0 0 0 0 0 0 0	0.0 0 50.0 0.0 50.0 100 0.0 100.0 0.0 0.000 0 5 0 5 10 0 78 0 0.0 0.0 100.0 0.0 100.0 0.0 100.0 0.0 100.0 0.0 0	0.0 0 50.0 0.0 50.0 100 0.0 100.0 0.0 100 0.000 0 0.500 0.500 0.886 0 0 5 0 5 10 0 78 0 78 0.0 0.0 100.0 100.0 100.0 0 0 100.0 0 0.0 100.0 0 0 0 0 0 0 0 0 0 0 0 0	0.0 0 50.0 0.0 50.0 100 0.0 100.0 0.0 100 1.4 0.000 0 0.500 0 0.886 0.886 0.886 0.0 0.0 100.0 0.0 <td< td=""><td>0.0 0 50.0 0.0 50.0 100 0.0 100.0 0.0 100 1.4 98.6 0 0 5 0 5 10 0 78 0 78 1 68 0.0 0.0 100.0 0.0 100.0 0.0 100.0 0.0 100.0</td><td>0.0 0 50.0 0.0 50.0 100 0.0 100.0 0.0 100 1.4 98.6 0.0 0.000 0 0.500 0.886 0.886 0.0 0.0 100.0 0.0 100.0 0.0 100.0 0.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 0.0</td><td>0.0 0 50.0 0.0 50.0 100 0.0 100.0 0.0 100 1.4 98.6 0.0 100 0.000 0 0.500 0.886 0.908</td></td<>	0.0 0 50.0 0.0 50.0 100 0.0 100.0 0.0 100 1.4 98.6 0 0 5 0 5 10 0 78 0 78 1 68 0.0 0.0 100.0 0.0 100.0 0.0 100.0 0.0 100.0	0.0 0 50.0 0.0 50.0 100 0.0 100.0 0.0 100 1.4 98.6 0.0 0.000 0 0.500 0.886 0.886 0.0 0.0 100.0 0.0 100.0 0.0 100.0 0.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 0.0	0.0 0 50.0 0.0 50.0 100 0.0 100.0 0.0 100 1.4 98.6 0.0 100 0.000 0 0.500 0.886 0.908

PM																		
	ch Parl	king De	ck Ent	rance_\	ech Parl	ring De	ck Entr	ance_V		4th	St			4th	n St			
		North	bound			Southb	ound			Eastb	ound			West	bound			
Start Time	Left	Thru	Rgt	App. Total	Left	Thru	Rgt	App. Total	Left	Thru	Rgt	App. Total	Left	Thru	Rgt	App. Total	Int.	Total
Peak Hour Analy	sis from	04:00	PM to 0	6:00 PN	1													
Peak Hour for Er	ntire Inte	rsection	Begin	s at 04:1	5 PM													
4:15 PM	0	0	C	0	30	0	22	52	0	22	0	22	0	23	0	23		97
4:30 PM	0	0	C	0	40	0	28	68	0	22	0	22	0	19	0	19		109
4:45 PM	0	0	C	0	25	0	32	57	0	11	0	11	0	24	0	24		92
5:00 PM	0	0	C	0	29	0	33	62	0	28	0	28	0	10	0	10		100
Total Volume	0	0	C) 0	124	0	115	239	0	83	0	83	0	76	0	76		398
% App. Total	0.0	0.0	0.0	0	51.9	0.0	48.1	100	0.0	100.0	0.0	100	0.0	100.0	0.0	100		
PHF				0.000				0.879				0.741				0.792		
Cars, PU, Vans	0	0	C) 0	124	0	115	239	0	83	0	83	0	76	0	76		398
% Cars, PU, Vans	0.0	0.0	0.0	0.0	100.0	0.0	100.0	100.0	0.0	100.0	0.0	100.0	0.0	100.0	0.0	100.0	1	100.0
Heavy Trucks	0	0	C) 0	0	0	0	0	0	0	0	0	0	0	0	0		0
%Heavy Trucks	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0

Project ID: 16-9175-007 Location: Williams St & Georgia Tech Parking Deck Entrance City: Atlanta

Day: Tuesday Date: 4/12/2016

Peak S	tart Times
AM	7:00 AM
MD	12:00 AM
PM	4:00 PM

Groups Printed - Cars, PU, Vans - Heavy Trucks

	Williams St						W	illiams	St	•	Georgia	Tech I	arking	Deck E	ntrance	Georgia	a Tech Pa	arking	Deck Er	ntrance	
		No	rthbou				So	uthbou				E	astbou				We	stbour			
Start Time	Left	Thru	Rgt	Peds A	pp. Total	Left	Thru	Rgt	Peds .		Left	Thru	Rgt	Peds	App. Total	Left	Thru	Rgt	Peds	App. Total	Int. Total
7:00 AM	0	4	1	0	5	4	9	0	0	13	0	0	0	0	0	0	0	2	0	2	20
7:15 AM	0	11	1	0	12	3	7	0	0	10		0	0	0	0	0	0	1	1	1	23
7:30 AM	0	14	0	0	14	3	11	0	0	14	0	0	0	0	0	0	0	1	0	1	29
7:45 AM	0	20	0	0	20	3	21	0	0	24	0	0	0	0	0	0	0	1	1	1	45
Total	0	49	2	0	51	13	48	0	0	61	0	0	0	0	0	0	0	5	2	5	117
8:00 AM	0	17	0	0	17	5	22	0	0	27	0	0	0	0	0	0	0	5	1	5	49
8:15 AM	0	17	0	0	17	2	19	0	0	21	0	0	0	0	0	1	0	2	0	3	41
8:30 AM	0	19	0	0	19	6	10	0	0	16	0	0	0	0	0	0	0	5	1	5	40
8:45 AM	0	23	0	0	23	1	11	0	0	12	0	0	0	0	0	1	0	3	0	4	39
Total	0	76	0	0	76	14	62	0	0	76	0	0	0	0	0	2	0	15	2	17	169
BREAK																					
4:00 PM	1	42	0	0	43	2	22	0	0	24	0	0	0	0	0	1	0	1	4	2	69
4:15 PM	1	39	1	0	41	3	12	0	0	15		0	0	0	0	1	0	1	2	2	58
4:30 PM	0	31	2	0	33	4	16	0	0	20		0	0	0	0	1	0	1	1	2	55
4:45 PM	1	38	2	0	41	3	22	0	0	25		0	0	0	0	3	0	2	3	5	71
Total	3	150	5	0	158	12	72	0	0	84	0	0	0	0	0	6	0	5	10	11	253
5:00 PM	1	45	0	0	46	2	22	0	0	24	0	0	0	0	0	1	0	1	4	2	72
5:15 PM	1	37	1	0	39	3	12	0	0	15		0	0	0	0	1	0	1	2	2	56
5:30 PM	0	31	2	0	33	4	16	0	0	20	0	0	0	0	0	0	0	1	1	1	54
5:45 PM	1	37	2	0	40	3	21	0	0	24	0	0	0	0	0	3	0	2	3	5	69
Total	3	150	5	0	158	12	71	0	0	83	0	0	0	0	0	5	0	5	10	10	251
Grand Total	6	425	12	0	443	51	253	0	0	304	I 0	0	0	0	ol	13	0	30	24	43	790
Apprch %	1.4	95.9	2.7	0.0	443	16.8	83.2	0.0	0.0	304	0.0	0.0	0.0	0.0	U	30.2	0.0	69.8	55.8	43	130
Total %	0.8	53.8	1.5	0.0	56.1	6.5	32.0	0.0	0.0	38.5	0.0	0.0	0.0	0.0	0.0	1.6	0.0	3.8	3.0	5.4	
Cars, PU, Vans	6.6	424	12	0.0	442	51	253	0.0	0.0	304	0.0	0.0	0.0	0.0	0.0	13	0.0	30	24	43	789
% Cars, PU, Vans	-	99.8	100.0	0.0	99.8	100.0	100.0	0.0	0.0	100.0		0.0	0.0	0.0	0.0	100.0	0.0	100.0		100.0	99.9
Heavy Trucks	0	1	0	3.0	1	0	0	0.0	3.0	0		0.0	0.0	0.0	0.0	0	0.0	0		0	1
%Heavy Trucks		0.2	0.0	0.0	0.2	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	

Project ID: 16-9175-007 Location: Williams St & Georgia Tech City: Atlanta

PEAK HOURS

	Williar	ns St			Willian	ns St		rgia Te	ch Parki	ng Dec	k Entra	rgia Te	ch Park	ing Dec	k Entra	
	Northb	ound			Southb	ound			Eastbo	ound			Westl	oound		
Left	Thru	Rgt	App. Total	Left	Thru	Rgt	App. Total	Left	Thru	Rgt	App. Total	Left	Thru	Rgt	App. Total	nt. Total
s from	07:00 A	M to 09	9:00 AM													
e Inter	section	Begins	at 07:4	5 AM												
				_												
0	20	0	20	3	21	0	24	0	0	0	0	0	0	1	1	45
0	17	0	17	5	22	0	27	0	0	0	0	0	0	5	5	49
0	17	0	17	2	19	0	21	0	0	0	0	1	0	2	3	41
0	19	0	19	6	10	0	16	0	0	0	0	0	0	5	5	40
0	73	0	73	16	72	0	88	0	0	0	0	1	0	13	14	175
0.0	100.0	0.0	100	18.2	81.8	0.0	100	0.0	0.0	0.0	0	7.1	0.0	92.9	100	
			0.913				0.815				0.000				0.700	
0	73	0	73	16	72	0	88	0	0	0	0	1	0	13	14	175
0.0	100.0	0.0	100.0	100.0	100.0	0.0	100.0	0.0	0.0	0.0	0.0	100.0	0.0	100.0	100.0	100.0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
S	0 0 0 0 0 0.0	Left Thru i from 07:00 A e Intersection 0 20 0 17 0 17 0 19 0 73 0.0 100.0 0 0 0	e Intersection Begins 0 20 0 0 17 0 0 17 0 0 19 0 0 73 0 0 73 0 0 73 0 0 73 0 0 73 0 0 73 0 0 73 0 0 73 0 0 73 0 0 73 0 0 73 0	Left Thru Rgt App. Total i from 07:00 AM to 09:00 AM e Intersection Begins at 07:4 0 20 0 20 0 17 0 17 0 17 0 17 0 19 0 19 0 73 0 73 0.0 100.0 0.0 100 0 73 0 73 0.0 100.0 0 0 0 0 0 100 0 0 0 0	Left Thru Rgt App. Total Left i from 07:00 AM to 09:00 AM e Intersection Begins at 07:45 AM 0 20 0 20 3 0 17 0 17 5 0 17 0 17 2 0 19 0 19 6 0 73 0 73 16 0.0 100.0 100 18.2 0 73 0 73 16 0.0 100.0 100.0 100.0 0 0 0 0 0 0 0 0 0 0 0	Left Thru Rgt Agp. Tools Left Thru i from 07:00 AM to 09:00 AM a	Left Thru Rgt App. Total Left Thru Rgt I from 07:00 AM to 09:00 AM e Intersection Begins at 07:45 AM at 07:45 AM at 07:45 AM 0 20 0 20 3 21 0 0 17 0 17 5 22 0 0 17 0 17 2 19 0 0 19 0 19 6 10 0 0 0 73 0 73 16 72 0 0 100 100 18.2 81.8 0.0 0 0 73 0 73 16 72 0 0 0 73 0 73 16 72 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Left Thru Rgt App. Total Left Thru Rgt App. Total if from 07:00 AM to 09:00 AM e Intersection Begins at 07:45 AM at 0.20 3 21 0 24 0 17 0 17 5 22 0 27 0 17 0 17 2 19 0 21 0 19 0 19 6 10 0 16 0 73 0 73 16 72 0 88 0 100.0 0 0 100 182 81.8 0.0 100 0 73 0 73 16 72 0 88 0 100.0 100.0 100.0 100.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Left Thru Rgt App. Totol Left Thru Rgt App. Totol Left if from 07:00 AM to 09:00 AM e Intersection Begins at 07:45 AM 0 20 20 3 21 0 24 0 0 17 0 17 5 22 0 27 0 0 17 0 17 2 19 0 21 0 0 19 0 19 6 10 0 16 0 0 73 0 73 16 72 0 88 0 0 100 0 100 18.2 81.8 0 100 0 0 73 0 73 16 72 0 88 0 0 73 0 73 16 72 0 88 0 0 73 0 73 16 72 0 88	Left Thru Rgt App. Tools Left Thru Rgt App. Tools Left Thru Rgt App. Tools Left Thru I from 07:00 AM to 09:00 AM e Intersection Begins at 07:45 AM a a 2 0 24 0 <td>Left Thru Rgt App. Total Left Thru Rgt if from 07:00 AM to 09:00 AM e Intersection Begins at 07:45 AM e 0 20 3 21 0 24 0 0 0 0 0 17 0 17 5 22 0 27 0</td> <td>Left Thru Rgt App. Total Left Thru Rgt App. Total Left Thru Rgt App. Total Left Thru Rgt App. Total 1 from 07:00 AM to 09:00 AM e Intersection Begins at 07:45 AM 0 20 20 3 21 0 24 0 0 0 0 0 0 17 0 17 5 22 0 27 0</td> <td>Left Thru Rgt App. Total Left 1 from 07:00 AM to 09:00 AM a 0 73.45 AM a 24 0</td> <td>Left Thru Rgt App. Total Left Thru Rgt App. Total Left Thru Rgt App. Total Left Thru i from 07:00 AM to 09:00 AM e e Intersection Begins at 07:45 AM 0 20 0 20 3 21 0 24 0</td> <td>Left Thru Rgt App. Total Left Thru Rgt App. Total App. Total<td>Left Thru Rgt App. Total Left Thru Rgt App. Total Left Thru Rgt App. Total i from 07:00 AM to 09:00 AM e Intersection Begins at 07:45 AM 0 20 0 20 3 21 0 24 0 0 0 0 0 1 1 0 17 0 17 5 22 0 27 0 0 0 0 0 5 5 5 0 17 0 17 2 19 0 21 0 0 0 0 0 0 5 5 0 19 0 19 6 10 0 16 0 0 0 0 0 5 5 5 0 73 0 73 16 72 0 88 0 0 0 0 0 92.9 100 0 73</td></td>	Left Thru Rgt App. Total Left Thru Rgt App. Total Left Thru Rgt App. Total Left Thru Rgt App. Total Left Thru Rgt if from 07:00 AM to 09:00 AM e Intersection Begins at 07:45 AM e 0 20 3 21 0 24 0 0 0 0 0 17 0 17 5 22 0 27 0	Left Thru Rgt App. Total Left Thru Rgt App. Total Left Thru Rgt App. Total Left Thru Rgt App. Total 1 from 07:00 AM to 09:00 AM e Intersection Begins at 07:45 AM 0 20 20 3 21 0 24 0 0 0 0 0 0 17 0 17 5 22 0 27 0	Left Thru Rgt App. Total Left Thru Rgt App. Total Left Thru Rgt App. Total Left Thru Rgt App. Total Left Thru Rgt App. Total Left Thru Rgt App. Total Left 1 from 07:00 AM to 09:00 AM a 0 73.45 AM a 24 0	Left Thru Rgt App. Total Left Thru Rgt App. Total Left Thru Rgt App. Total Left Thru i from 07:00 AM to 09:00 AM e e Intersection Begins at 07:45 AM 0 20 0 20 3 21 0 24 0	Left Thru Rgt App. Total Left Thru Rgt App. Total Left Thru Rgt App. Total Left Thru Rgt App. Total Left Thru Rgt App. Total Left Thru Rgt App. Total Left Thru Rgt App. Total Left Thru Rgt App. Total Left Thru Rgt App. Total Left Thru Rgt App. Total Left Thru Rgt App. Total Left Thru Rgt App. Total Left Thru Rgt App. Total Left Thru Rgt App. Total Left Thru Rgt App. Total Left Thru Rgt App. Total Left Thru Rgt App. Total Left Thru Rgt App. Total App. Total <td>Left Thru Rgt App. Total Left Thru Rgt App. Total Left Thru Rgt App. Total i from 07:00 AM to 09:00 AM e Intersection Begins at 07:45 AM 0 20 0 20 3 21 0 24 0 0 0 0 0 1 1 0 17 0 17 5 22 0 27 0 0 0 0 0 5 5 5 0 17 0 17 2 19 0 21 0 0 0 0 0 0 5 5 0 19 0 19 6 10 0 16 0 0 0 0 0 5 5 5 0 73 0 73 16 72 0 88 0 0 0 0 0 92.9 100 0 73</td>	Left Thru Rgt App. Total Left Thru Rgt App. Total Left Thru Rgt App. Total i from 07:00 AM to 09:00 AM e Intersection Begins at 07:45 AM 0 20 0 20 3 21 0 24 0 0 0 0 0 1 1 0 17 0 17 5 22 0 27 0 0 0 0 0 5 5 5 0 17 0 17 2 19 0 21 0 0 0 0 0 0 5 5 0 19 0 19 6 10 0 16 0 0 0 0 0 5 5 5 0 73 0 73 16 72 0 88 0 0 0 0 0 92.9 100 0 73

PM																	
		Willia	ms St			Willian	ns St		rgia Te	ch Park	ing Dec	k Entra	rgia Te	ch Park	ing Dec	k Entra	
		North	oound			Southb	ound			Eastb	ound			Westl			
Start Time	Left	Thru	Rgt	App. Total	Left	Thru	Rgt	App. Total	Left	Thru	Rgt	App. Total	Left	Thru	Rgt	App. Total	Int. Total
Peak Hour Analys	sis from	04:00 F	PM to 06	6:00 PM													
Peak Hour for En	tire Inter	section	Begins	at 04:1	5 PM												
4:15 PM	1	39	1	41	3	12	0	15	0	0	0	0	1	0	1	2	58
4:30 PM	0	31	2	33	4	16	0	20	0	0	0	0	1	0	1	2	55
4:45 PM	1	38	2	41	3	22	0	25	0	0	0	0	3	0	2	5	71
5:00 PM	1	45	0	46	2	22	0	24	0	0	0	0	1	0	1	2	72
Total Volume	3	153	5	161	12	72	0	84	0	0	0	0	6	0	5	11	256
% App. Total	1.9	95.0	3.1	100	14.3	85.7	0.0	100	0.0	0.0	0.0	0	54.5	0.0	45.5	100	
PHF				0.875				0.840				0.000				0.550	
Cars, PU, Vans	3	153	5	161	12	72	0	84	0	0	0	0	6	0	5	11	256
% Cars, PU, Vans		100.0	100.0	100.0	100.0	100.0	0.0	100.0	0.0	0.0	0.0	0.0	100.0	0.0	100.0	100.0	100.0
Heavy Trucks	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
%Heavy Trucks	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

Day: Tuesday Date: 4/12/2016

Peak S	tart Times
AM	7:00 AM
MD	12:00 AM
PM	4:00 PM

Groups Printed - Cars, PU, Vans - Heavy Trucks

	Williams St Williams St									, Ouis,	5th St 5th St										
			rthbou					uthbou				E	astbou	nd				stboun	d		
Start Time	Left	Thru	Rgt	Peds	App. Total	Left	Thru	Rgt	Peds	App. Total	Left	Thru	Rgt	Peds A	App. Total	Left	Thru	Rgt	Peds	App. Total	Int. Total
7:00 AM	2	1	3	7	6	0	0	0	7	0	6	12	10	0	28	3	21	17	3	41	75
7:15 AM	7	5	2	4	14	0	0	0	14	0	11	10	10	3	31	1	30	14	1	45	90
7:30 AM	9	6	2	16	17	0	0	0	25	0	22	20	14	2	56	2	29	11	4	42	115
7:45 AM	10	11	3	61	24	0	0	0	49	0		24	21	1	64	3	36	24	7	63	151
Total	28	23	10	88	61	0	0	0	95	0	58	66	55	6	179	9	116	66	15	191	431
8:00 AM	12	7	1	32	20	0	0	0	22	0	22	44	27	2	93	1	48	18	3	67	180
8:15 AM	12	5	4	23	21	0	0	0	18	0	16	26	17	4	59	3	46	27	4	76	156
8:30 AM	10	12	2	26	24	0	0	0	27	0	21	28	15	1	64	4	43	18	6	65	153
8:45 AM	16	9	2	50	27	0	0	0	67	0	24	35	13	2	72	3	53	24	17	80	179
Total	50	33	9	131	92	0	0	0	134	0	83	133	72	9	288	11	190	87	30	288	668
BREAK																					
4:00 PM	10	22	4	55	36	0	0	0	57	0	35	45	16	3	96	2	48	22	17	72	204
4:15 PM	24	23	5	108	52	0	0	0	92	0	38	48	23	9	109	0	63	21	20	84	245
4:30 PM	14	9	4	169	27	0	0	0	103	0	-	55	12	17	113	3	69	24	23	96	236
4:45 PM	25	26	4	71	55	0	0	0	82	0	45	45	13	5	103	0	73	21	21	94	252
Total	73	80	17	403	170	0	0	0	334	0	164	193	64	34	421	5	253	88	81	346	937
5:00 PM	23	14	6	97	43	0	0	0	107	0	49	55	23	10	127	2	102	21	27	125	295
5:15 PM	12	24	3	82	39	0	0	0	84	0	44	66	13	5	123	2	86	40	20	128	290
5:30 PM	16	13	2	88	31	0	0	0	84	0	58	58	19	8	135	3	95	48	19	146	312
5:45 PM	21	14	4	142	39	0	0	0	121	0	45	63	23	15	131	4	104	27	24	135	305
Total	72	65	15	409	152	0	0	0	396	0	196	242	78	38	516	11	387	136	90	534	1202
Grand Total	223	201	51	1031	475	0	0	0	959	0	501	634	269	87	1404	36	946	377	216	1359	3238
Apprch %	46.9	42.3	10.7	217.1		0.0	0.0	0.0	0.0		35.7	45.2	19.2	6.2		2.6	69.6	27.7	15.9		,
Total %	6.9	6.2	1.6	31.8	14.7	0.0	0.0	0.0	29.6	0.0		19.6	8.3	2.7	43.4	1.1	29.2	11.6	6.7	42.0	
Cars, PU, Vans	223	201	51	1031	475	0	0	0	959	0	501	632	269	87	1402	36	946	370	216	1352	3229
% Cars, PU, Vans	100.0	100.0	100.0	100.0	100.0	0.0	0.0	0.0	100.0	0.0	100.0	99.7	100.0	100.0	99.9	100.0	100.0	98.1	100.0	99.5	99.7
Heavy Trucks	0	0	0		0	0	0	0		0	0	2	0		2	0	0	7		7	9
%Heavy Trucks	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.3	0.0	0.0	0.1	0.0	0.0	1.9	0.0	0.5	0.3

Project ID: 16-9175-001 Location: Williams St & 5th St City: Atlanta

PEAK HOURS

AM																		
		Willia				Willia				5th				1				
		North	oound			South	ound			Eastb	ound			West	bound			
Start Time	Left	Thru	Rgt	App. Total	Left	Thru	Rgt	App. Total	Left	Thru	Rgt	App. Total	Left	Thru	Rgt	App. Total	Int. To	tal
Peak Hour Analys	sis from	07:00 A	AM to 09	9:00 AM	l													
Peak Hour for En	tire Inter	rsection	Begins	at 08:0	MA 0													
8:00 AM	12	7	1	20	0	0	C) 0	22	44	27	93	1	48	18	67	l 1	80
8:15 AM	12	5	4	21	0	0	Ċ	0	16	26	17	59	3	46	27	76	1	56
8:30 AM	10	12	2	24	0	0	(0	21	28	15	64	4	43	18	65	1	53
8:45 AM	16	9	2	27	0	0	(0	24	35	13	72	3	53	24	80	1	79
Total Volume	50	33	9	92	0	0	(0 (83	133	72	288	11	190	87	288	6	68
% App. Total	54.3	35.9	9.8	100	0.0	0.0	0.0) 0	28.8	46.2	25.0	100	3.8	66.0	30.2	100		
PHF				0.852				0.000				0.774				0.900		
Cars, PU, Vans	50	33	9	92	0	0	(0 (83	132	72	287	11	190	86	287	6	666
% Cars, PU, Vans	100.0	100.0	100.0	100.0	0.0	0.0	0.0	0.0	100.0	99.2	100.0	99.7	100.0	100.0	98.9	99.7	9	9.7
Heavy Trucks	0	0	0	0	0	0	(0 (0	1	0	1	0	0	1	1		2
%Heavy Trucks	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.8	0.0	0.3	0.0	0.0	1.1	0.3		0.3

PM																			
		Willia	ms St			Willian	ns St			5th	St			5th	n St				
		North	oound			Southb	ound			Eastb	ound			West	bound				
Start Time	Left	Thru	Rgt	App. Total	Left	Thru	Rgt	App. Total	Left	Thru	Rgt	App. Total	Left	Thru	Rgt	App. Total	Int. To	tal	
Peak Hour Analys	sis from	04:00 F	PM to 06	:00 PM															
Peak Hour for En	tire Inter	section	Begins	at 05:0	0 PM														
5:00 PM	23	14	6	43	0	0	0	0	49	55	23	127	2	102	21	125	2	295	
5:15 PM	12	24	3	39	0	0	0	0	44	66	13	123	2	86	40	128	2	290	
5:30 PM	16	13	2	31	0	0	0	0	58	58	19	135	3	95	48	146	3	312	
5:45 PM	21	14	4	39	0	0	0	0	45	63	23	131	4	104	27	135	3	305	
Total Volume	72	65	15	152	0	0	0	0	196	242	78	516	11	387	136	534	12	202	
% App. Total	47.4	42.8	9.9	100	0.0	0.0	0.0	0	38.0	46.9	15.1	100	2.1	72.5	25.5	100			
PHF				0.884				0.000				0.956				0.914			
Cars, PU, Vans	72	65	15	152	0	0	0	0	196	242	78	516	11	387	132	530	11	98	
% Cars, PU, Vans	100.0	100.0	100.0	100.0	0.0	0.0	0.0	0.0	100.0	100.0	100.0	100.0	100.0	100.0	97.1	99.3	99	9.7	
Heavy Trucks	0	0	0	0	0	0	0	0	0	0	0	0	0	0	4	4		4	
%Heavy Trucks	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	29	0.7		nз	