Transportation Analysis

Big Creek DRI# 1885 City of Buford, Hall County, Georgia

Prepared for: Heritage South Partners, L.P.

Prepared by: Kimley-Horn and Associates, Inc. Norcross, GA

©Kimley-Horn and Associates, Inc. September 2008 019783000

TABLE OF CONTENTS

1.0		Project Description.	1
	1.1	Introduction	1
	1.2	Site Plan Review	1
	1.3	Site Access	2
	1.4	Bicycle and Pedestrian Facilities	2
	1.5	Transit Facilities	2
2.0		Traffic Analyses Methodology and Assumptions	2
	2.1	Growth Rate	2
	2.2	Traffic Data Collection	2
	2.3	Detailed Intersection Analysis	2
3.0		Study Network	3
	3.1	Gross Trip Generation	3
	3.2	Trip Distribution	3
	3.3	Level of Service Standards	3
	3.4	Study Network Determination	3
	3.5	Existing Facilities	4
4.0		Trip Generation	4
5.0		Traffic Analysis	5
	5.1	Existing Traffic	5
	5.2	2014 No-Build Traffic	5
	5.3	2014 Build Traffic	6
6.0		Identification of Programmed Projects	7
8.0		Ingress/Egress Analysis	7
9.0		Internal Circulation Analysis	7
10.0)	Compliance with Comprehensive Plan Analysis	7
11.0)	Non-Expedited Criteria	7
	11.1	Offsite Trip Reduction and Trip Reduction Techniques	7
	11.2	Relationship Between Proposed DRI and Existing Development and Infrastructure	7
12.0)	ARC's Air Quality Benchmark	8

LIST OF TABLES

Page

Table 1:	Proposed Land Uses	1
Table 2:	Big Creek DRI, Gross Trip Generation	3
Table 3:	Big Creek DRI, Net Trip Generation	4
Table 4:	Existing 2008 Intersection Levels of Service	5
Table 5:	2014 No-Build Intersection Levels of Service	6
Table 6:	2014 Build Intersection Levels of Service	6
Table 7:	ARC VMT Reductions	8

LIST OF FIGURES

Following Page

Figure 1:	Site Location	1
Figure 2:	Aerial	1
Figure 3:	Site Plan	1
Figure 4:	Existing 2008 Conditions	5
Figure 5:	2014 No-Build Conditions	5
Figure 6:	2014 Build Conditions	6

EXECUTIVE SUMMARY

This report presents the analysis of the anticipated traffic impacts of a proposed +/- 88-acre mixed-use development located in the City of Buford and Hall County, Georgia. This report is being prepared as part of a submittal requesting annexation and rezoning in the City of Buford. Approximately 53 acres is proposed to be annexed from Hall County into the City of Buford (35 acres is currently in the City of Buford). The rezoning proposes to change AR-3 (Hall County) to R-100 and C-2. A Special Use Permit is also being applied for to allow attached residential housing and a Special Use Permit is being applied for to allow residential above the commercial. Because the proposed development will exceed 400,000 square feet and is to be annexed into the City of Buford, it is a Development of Regional Impact (DRI) and is subject to Atlanta Regional Commission (ARC) review.

The proposed mixed-use development is expected to consist of approximately 64 single family homes, 620 recreational homes, and 30,000 square feet of commercial space. The development is scheduled to be completed in phases with full buildout expected by the year 2014.

Capacity analyses were performed for the Existing 2008 Conditions, Projected 2014 No-Build Conditions, and Projected 2014 Build Conditions at two intersections. This study network consists of:

- 1. SR 347 (Friendship Road) at SR 13 (Buford Highway)
- 2. SR 347 (Friendship Road) at McEver Road

Each of the above listed intersections was analyzed for the Existing 2008 Conditions, the 2014 No-Build Conditions, and the 2014 Build Conditions. Based on the existing 2008 conditions, none of the study intersections currently operate below the acceptable Level of Service standard (LOS D) during the AM and PM peak hours. The Projected 2014 No-Build Conditions represent the existing traffic volumes grown at 3% per year for six years along all roadway links. The 2014 No-Build Conditions indicated the two study intersections are expected to operate at an acceptable Level of Service standard with no improvements. The Projected 2014 Build Conditions indicate the two study intersections are expected to operate at an acceptable Level of Service standard with no improvement to the Projected 2014 No-Build Conditions. The 2014 Build Conditions indicate the two study intersections are expected to operate at an acceptable Level of Service standard with no improvement to the Projected 2014 No-Build Conditions. The 2014 Build Conditions indicate the two study intersections are expected to operate at an acceptable Level of Service standard with no improvement to the Projected 2014 No-Build Conditions. The 2014 Build Conditions indicate the two study intersections are expected to operate at an acceptable Level of Service standard with no improvements.

The following recommendations are made at the proposed project driveway:

Proposed Full-movement (unsignalized) driveway along SR 374 (Holiday Road):

- Install a westbound right-turn deceleration lane along SR 374 (Holiday Road).
- Install an eastbound left-turn lane along SR 374 (Holiday Road).
- Install a separate left-turn lane and right-turn lane exiting the site along the proposed driveway.

1.0 PROJECT DESCRIPTION

1.1 Introduction

This report presents the analysis of the anticipated traffic impacts of a proposed +/- 88-acre mixed-use development located in the City of Buford and Hall County, Georgia. This report is being prepared as part of a submittal requesting annexation and rezoning in the City of Buford. Approximately 53 acres is proposed to be annexed from Hall County into the City of Buford (35 acres is currently in the City of Buford). The rezoning proposes to change AR-3 (Hall County) to R-100 and C-2. A Special Use Permit is also being applied for to allow attached residential housing and a Special Use Permit is being applied for to allow residential above the commercial. Because the proposed development will exceed 400,000 square feet and is to be annexed into the City of Buford, it is a Development of Regional Impact (DRI) and is subject to Atlanta Regional Commission (ARC) review.

The proposed mixed-use development is expected to consist of approximately 64 single family homes, 620 recreational homes, and 30,000 square feet of commercial space. The development is scheduled to be completed in phases with full buildout by the year 2014.

A summary of the proposed land-uses and densities can be found below in Table 1.

Table 1 Proposed Land Uses		
Residential Units (single family)	64 units	
Residential Units (recreational)	620 units	
Commercial Space	30,000 square feet	

Figure 1 and Figure 2 provide a location map and an aerial photograph of the site.

1.2 Site Plan Review

The proposed site is located along the north side of SR 347 (Holiday Road) and west side of North Waterworks Road. The site is primarily wooded and includes an existing restaurant (Big Creek Tavern) and boat storage facility (Kents Dry Storage Facility). The site has roadway frontage along SR 347 (Holiday Road) and North Waterworks Road. Two roads currently pass through the site. Big Creek Road travels north-south and connects SR 347 to the Big Creek Park (and boat ramps) north of the site. Whidby Road travels north-south and connects SR 347 to a couple residential homes north of the site. Traffic currently utilizing Big Creek Road to access the Big Creek Park and boat ramps will be shifted to the main road through the planned development. Traffic currently utilizing Whidby Road to access homes at the north end of the road will be shifted to the main road through the planned development.

The proposed retail is located internal to the site and not located along the site frontage. Retail can be accessed through the one proposed driveway along SR 347 (Holiday Road). The development proposes open spaces in the residential and retail portions of the site, primarily in proximity to Lake Lanier. **Figure 3** is a small-scale copy of the site plan.

						(MAR ADDRESS OF		
	DEVEL	OPME.N	TSUM	IMARY		5	2 0 105	-assoc.com
	Camp Tow Buildings AI A2-A4 Total Units	/II Max. Bldg. Ht. Stories 8 4	Avg. Unit Size *50 1,000	Min, Unit Size 140 760	No. Units 130 34	hest	sociates, L esvile, Georgia 30	k www.rochester
	A5-AII Hillside Buildings	3 Max. Bldg.	Avg. Unit Size	Min, Unit	30,000 SF No.	NZ R	er N.W. Gair	0)718.9090 Fa
	Creekside Buildings	Villas Max. Bidg.	Avg. Unit	180 Min. Unit	200 No.		425 Oak Stre	18.0600 (77)
	ci-cé Tupelo Cc Buildings	4 4 Max. Bldg.	1,500 Avg. Unit	Min. Unit	48 No.	Ľ		(770)7
	The Outlo	Ht. Stories 6 ok Max. Bida.	Size 2,000 Ava. Unit	Size 1,560 Min. Unit	Units 40 No.	AN AN		
	The Pines	Ht. Stories	Size 1500	Size 1,170	Units 128	I A	sort	
 	Cliff Hous	мах. Ыад. Ht. Stories З e	Avg. Unit Size 2,000	Min, Unit Size 1,560	NO. Units 64	AND	ids Res orgia	5
14	Buildings ଣ	Max. Bidg. Ht. Stories 6	Avg. Unit Size 1,050	Mîn. Unil Size 820	No. Units 40		er Islan rd, Geo	
	General Deve This Master Plar pod plans with a elevations.	lopment Notes: consists of the o accompanying text,	verall draning c typical sections	if the site and s, and concept	individbal bvilding		e Lanie Bufoi	
	The developer i development or development. Sidewalks may n soft surface tra	nay provide a Mas submit such plans neander into comm ills may be creater	ter Landscape In conjunction wi on oreas. Addi d to connect ac	rian for the en th each phase tional hard sur! tivity areas with	tre of 'ace and hin the	CR	Lak	
1	develapment at Retaining walfs (wilhin limited po combined impac	the developer's c and water quality-r rilans of the 75' in ts do not exceed .	ilscretion. related structuri pervious buffer 20%.	ss may be cons setback area	tructed providea	SG		
4	Utilities will lie w within rights-of-	iithin dedicated øo nays, if public or a	samants, which n ny cambination	nay be combine	d ar	Ľ		M
1	The location of vary milhin the r development is uses and densit.	buildings, roads, pa esart, based on hi in general compila ies.	rking areas and sid and market no.e with the ma	i amenity Featu canditions, pro ster plan for k	res may Aded the Xation of	\square		
1				17 / X 1973 - St			DESCRIPTION	SNO
\gtrsim	HA Dirk	(* * * * * * * * * * * * * * * * * * *					NTE	REVIS
4	Æ						•	
		2 3.55	1. J 1. Start 1. Star				, oz	
3	[74]						CRIPTION NO.	0
100							0ESCRIPTION NO.	REVISIONS
							NO. DATE DESCRIPTION NO.	REVISIONS
PI	nes					r scris he state	NO. DATE DESCRIPTION NO.	. 300' REVISIONS
PICAL PICAL	nes					VADD DARKES I'R REARS THE REC OF DESCENTION OF DESCENT	AMHIC SCALE No. DATE DESCRIPTION NO.	0 220' 330' REVISIONS
PICE	nes					MAS RAT IS 107 - 4400 MERSA I REARS INE MASS TA RECOMMENDATION OF REARS INE MARKET AND RECOMMENDATION OF REAR AND	GRAMHIG SCALE NO. DATE DESCRIPTION NO.	7 50' 100' 200' REVISIONS
	nes					Pas FLAT IS 100' MAD MERSA I REAS IN Design The Store of Marce of Mersa Market Park Reas In Market Park Park Park Park Park Park Park Park	GRAMHIC SCALE HOL. DATE DESCRIPTION NO.	0' 50' 100' 220' 320' REVISIONS
	ńes					Press, Artis, Host, Ando Lendord, J. Morels, D. M. Londord, S. Leit, Host, Ando Lendord, J. Morels, D. M. Londord, S. Leit, Statistican J. S. K. Schwart, S. M.	CRAMMIC SCALE NO. DAVE DESCRIPTION NO.	0 50 100 220 300 REVISIONS
	nes			RE		In the first of th	122/08 1002/21/20 1002/20 1000/20 1000/20 1000/20 1000/20 1000/20 100	1 INN PART OF SUCCESSIONS
	nes			REI TINN TINN			DATE: 0/12/08 DATE: 0/12/08 DB No. 2017/07 DB NO. 2	DVANN BYLINK DVANN BYLINK DVG NO. 300 REVISIONS

1.3 Site Access

Access to the development is proposed at one location along SR 347 (Holiday Road). The full movement driveway is proposed along SR 347 (Holiday Road) near Whidby Road and approximately 785 feet west of North Waterworks Road. Pedestrian access will be provided at the site driveway.

1.4 Bicycle and Pedestrian Facilities

Sidewalks currently do not exist along the site frontage along SR 347 (Holiday Road). There are no dedicated bike lanes in the area.

1.5 Transit Facilities

There are currently no transit accommodations servicing the area.

2.0 TRAFFIC ANALYSES METHODOLOGY AND ASSUMPTIONS

2.1 Growth Rate

Background traffic is defined as expected traffic on the roadway network in future year(s) absent the construction and opening of the proposed project. Historical traffic count data from the Georgia DOT was analyzed to help determine a background traffic growth rate. Based on the recent trends in traffic along the area roadways, as well as the population growth rates of Hall County, a growth rate of 3.0% per year along all roadways was agreed upon during the methodology meeting with ARC staff.

2.2 Traffic Data Collection

Vehicle turning movement counts were performed from 7:00 - 9:00 AM and 4:00 - 6:00 PM at the two signalized intersections within the study network. The data was collected on the 29^{th} of July (when school was not in session). The morning and afternoon peak hours varied between the two intersections and are listed below:

- 1. SR 347 (Friendship Road) at SR 13 (Buford Highway)
 - 7:00 8:00 AM Peak Hour, 4:30-5:30 PM Peak Hour
- 2. SR 347 (Friendship Road) at McEver Road
 - 7:15 8:15 AM Peak Hour, 4:45-5:45 PM Peak Hour

A 24-hour count was performed along SR 347 (Holiday Road) on July 29th and was 5,858 vehicles per day (vpd). The 24-hour volume was compared to a 24-hour count of 2,940 vpd collected by GDOT earlier in the year when school was in session. The summer volumes were higher than the volumes when school was in session. This may be due to the proximity to the lake and attractions at the lake. Therefore, no volume adjustment was made to the summer counts.

All raw count data is included in the Appendix.

2.3 Detailed Intersection Analysis

Level-of-service (LOS) is used to describe the operating characteristics of a road segment or intersection in relation to its capacity. LOS is defined as a qualitative measure that describes operational conditions and motorists perceptions within a traffic stream. The Highway Capacity Manual defines six levels of service, LOS A through LOS F, with A being the best and F being the worst. Level of service analyses were conducted at all intersections within the study network using Synchro Professional, Version 7.0.

Levels of service for signalized intersections are reported for the intersection as a whole. One or more movements at an intersection may experience a low Level of service, while the intersection as a whole may operate acceptably.

Levels of service for unsignalized intersections, with stop control on the minor street only, are reported for the side street approaches. Low Levels of service for side street approaches are not uncommon, as vehicles may experience delay in turning onto a major roadway.

3.0 Study Network

3.1 Gross Trip Generation

As stated earlier, the proposed development will consist of approximately 64 single family homes, 620 recreational homes, and 30,000 square feet of commercial space.

Traffic for these land uses was calculated using equations contained in the *Institute of Transportation Engineers'* (*ITE*) *Trip Generation Manual, Seventh Edition, 2003.* Gross trips generated are displayed below in **Table 2**.

Table 2 Big Creek DRI Gross Trip Generation							
		Daily	Traffic	AM Pea	ak Hour	PM Pea	ak Hour
Land Use	ITE Code	Enter	Exit	Enter	Exit	Enter	Exit
	Build-Out (Year 2014)						
64 Single Family Units	210	345	345	14	40	45	27
620 Recreational Homes	260	980	980	66	33	66	95
20,000 SF Shopping Center	820	430	430	13	8	36	39
10,000 SF Quality Restaurant	931	450	450	4	4	50	25
Total		2,204	2,204	97	85	197	186

3.2 Trip Distribution

The directional distribution and assignment of new project trips was based on the project land uses, a review of development in the area, combined with engineering judgment and discussions at the Pre-Application meeting. The distribution was 20% to/from the west along Holiday Road and 80% to/from the east along Holiday Road.

3.3 Level of Service Standards

For the purposes of this traffic analysis, a level of service standard of D was assumed for all intersections and segments within the study network. If, however, an intersection or segment currently operates at LOS E or LOS F during an existing peak period, the LOS standard for that peak period becomes LOS E.

3.4 Study Network Determination

A general study area was determined using the 7% rule. This rule recommends that all intersections and segments be analyzed which are impacted to the extent that the traffic from the proposed site is 7% or more of the Service Volume of the facility (at a previously established LOS standard) be considered for analysis. This general study area was refined during the methodology meeting, and includes the following intersections:

- SR 347 (Friendship Road) at SR 13 (Buford Drive)
- SR 347 (Friendship Road) at McEver Road
- SR 347 (Holiday Road) at proposed site driveway

Each of the above listed intersections was analyzed for the Existing 2008 Condition, the 2014 No-build Condition, and the 2014 Build Condition. The 2014 No-build condition represents the existing traffic volumes grown at 3.0% per year for six years. The 2014 Build condition adds the project trips associated with the Big Creek DRI development to the 2014 No-Build condition. (Note: The proposed site driveway was only analyzed for the 2014 Build conditions.)

3.5 Existing Facilities

Roads in the study network were inventoried to obtain geometric characteristics, posted speed limits, and the GDOT Roadway Functional Classifications. A description follows:

Roadway	Number of Lanes	Posted Speed Limit (MPH)	GDOT Functional Classification
SR 347 (Holiday Road)	2	45	Urban Minor Arterial
McEver Road	4	55	Urban Minor Arterial
New Bethany Road	2	45	Urban Local Street
SR 13 (Atlanta Highway)	2	45	Urban Minor Arterial
SR 347 (Friendship Road)	2/4	45	Urban Minor Arterial

SR 347 (Holiday Road) is a two-way, undivided, east-west oriented roadway that extends from the west, along the site frontage, and to McEver Road to the east. The posted speed limit along the site frontage is 45 MPH. On July 29, 2008, the average daily traffic volume (ADT) east of Whidby Road (along the site frontage) was 5,858 vehicles.

McEver Road is a two-way, divided, north-south oriented roadway that extends from the county line to SR 53 (Dawsonville Highway). The posted speed limit is 55 MPH.

New Bethany Road is a two-way, north-south oriented roadway that extends from South Waterworks Road to SR 347 (Holiday Road).

4.0 TRIP GENERATION

As stated earlier, trips associated with the proposed development were estimated using the ITE *Trip Generation Manual*, Seventh Edition (2003), using equations in where available.

Mixed-use and pass-by reductions were taken according to the *ITE Trip Generation Handbook, 2004*. The total trips generated and analyzed in the report are listed below in **Table 3**.

Table 3 Big Creek DRI Net Trip Generation						
	Daily	Traffic	AM Pea	ak Hour	PM Pea	k Hour
Land Use	Enter	Exit	Enter	Exit	Enter	Exit
В	Build-Out (Year 2014)					
Gross Trips	2,204	2,204	97	85	197	186
Internal Capture Reductions	-176	-176	-0	-0	-20	-19
Pass-by Reductions	-612	-612	-0	-0	-21	-20
New Trips	1,416	1,416	97	85	156	147

5.0 TRAFFIC ANALYSIS

5.1 Existing Traffic

The existing 2008 traffic volumes and laneage are shown in **Figure 4**. These volumes were input in Synchro 7.0 and an Existing Conditions analysis was performed. The results are displayed below in **Table 4**.

	Table 4 Big Creek DRI Existing 2008 Intersection Levels of Service (delay in seconds)				
	Intersection	Control	AM Peak Hour	PM Peak Hour	
1	SR 347 (Friendship Road) at SR 13 (Buford Highway)	Signal	C (26.3)	D (36.7)	
2	SR 347 (Friendship Road) at McEver Road	Signal	C (28.2)	C (34.6)	

As shown in Table 4, both of the existing intersections in the network currently operate above the acceptable Level of Service standard (LOS D).

5.2 2014 No-Build Traffic

The existing traffic volumes were grown at 3.0% per year for six years along all roadway links within the study network. These volumes were input in Synchro 7.0, and analyses of the projected No-Build conditions were performed. The results are displayed below in **Table 5.** The projected volumes for the year 2014 No-Build condition are illustrated in **Figure 5.**

	Table 5 Big Creek DRI No-Build 2014 Intersection Levels of Service (delay in seconds)				
	Intersection	Control	AM Peak Hour	PM Peak Hour	
1	SR 347 (Friendship Road) at SR 13 (Buford Highway)	Signal	C (28.9)	D (49.4)	
2	SR 347 (Friendship Road) at McEver Road	Signal	C (32.6)	D (45.2)	

As shown in Table 5, the both of the existing intersections in the network are expected to operate above the acceptable Level of Service standard (LOS D).

5.3 2014 Build Traffic

The traffic associated with the proposed development (Big Creek) was added to the 2014 No-Build volumes. These volumes were input into Synchro 7.0 and analyses of the projected 2014 Build conditions were performed. The results of the study intersection analysis and proposed driveway analysis are displayed below in **Table 6**. The projected volumes, laneage, and recommended intersection control for the year 2014 Build condition are illustrated in **Figure 6**.

	Table 6 Big Creek DRI Build 2014 Intersection Levels of Service (delay in seconds)				
Intersection Control AM Peak Hour PM Peak Hou					
1	SR 347 (Friendship Road) at SR 13 (Buford Highway)	Signal	C (29.5)	D (54.4)	
2	SR 347 (Friendship Road) at McEver Road	Signal	C (32.9)	D (50.1)	
3	SR 347 (Holiday Road) at Proposed Site Driveway	STOP-Control	SB - B (12.1)	SB - D (34.5)	

As shown in Table 6, the both of the existing intersections (#1 and #2) are expected to operate above the acceptable Level of Service standard (LOS D). The proposed project driveway is expected to operate at an acceptable level of service.

The following recommendations are made at the proposed project driveway:

Proposed Full-movement (unsignalized) driveway along SR 374 (Holiday Road):

- Install a westbound right-turn deceleration lane along SR 374 (Holiday Road).
- Install an eastbound left-turn lane along SR 374 (Holiday Road).
- Install a separate left-turn lane and right-turn lane exiting the site along the proposed driveway.

6.0 IDENTIFICATION OF PROGRAMMED PROJECTS

The *TIP*, *STIP*, *RTP*, and *GDOT's Construction Work Program* were searched for currently programmed transportation projects within the vicinity of the proposed development. According to GDOT's Construction Work Program and the STIP two projects are programmed for the area. Information on the projects is included in the Appendix.

Project #	Build Out Year	Project Description
GDOT #170735	2009	Widening of SR 347 (Friendship Road) from 2 to 4 lanes from I-985 to CR 1293 (McEver Road).

8.0 INGRESS/EGRESS ANALYSIS

Vehicular access to the development is proposed at one location along SR 347 (Friendship Road). The full movement driveway is proposed along SR 347 (Friendship Road) near Whidby Road and approximately 785 feet west of North Waterworks Road. Pedestrian access will be provided at the site driveway.

9.0 INTERNAL CIRCULATION ANALYSIS

The proposed development will generate trips between the residential and retail uses of the development. Using the *ITE Trip Generation Handbook*, 2004 as a reference, 7.99% of the gross daily trips are expected to be internal and 8.36% of the PM peak hour trips are expected to be internal.

10.0 COMPLIANCE WITH COMPREHENSIVE PLAN ANALYSIS

The Atlanta Region Unified Growth Policy Map identifies the area as Suburban Neighborhoods.

11.0 NON-EXPEDITED CRITERIA

11.1 Offsite Trip Reduction and Trip Reduction Techniques

The proposed development will generate trips between the residential and retail uses of the development. Using the *ITE Trip Generation Handbook*, 2004 as a reference, 7.99% of the gross daily trips are expected to be internal and 8.36% of the PM peak hour trips are expected to be internal.

Pass-by reductions were taken according to the ITE Trip Generation Handbook, 2004.

11.2 Relationship Between Proposed DRI and Existing Development and Infrastructure

The development is located in an area where the existing infrastructure is expected to be adequate to serve the needs of the development upon build-out (2013).

12.0 ARC'S AIR QUALITY BENCHMARK

The mixed-use development is proposed to contain both residential and retail uses. The residential use is the dominant use, totaling an expected 871,500 SF. The residential density is approximately 7.8 units per acre. One of ARC's vehicle miles traveled (VMT) credits applies to residential projects with high densities. This project is expected to have a 3% reduction in VMT based on residential density. The 30,000 square feet of retail space is approximately 3.5% of the total development. One of ARC's VMT credits applies to primarily residential developments that include retail component. This project is expected to have a 1% reduction in VMT based on the retail component size. The development proposes a network of sidewalks within the site, which meets the ARC bicycle and pedestrian criteria for a 3% reduction. The total reduction for the proposed development is 16%. These reductions are displayed below in **Table 7**.

Table 7 ARC VMT Reductions	
Mixed-Use where Residential is the	dominant use
Project where residential is the dominant use and the density is greater than 10 dwelling units/acre	-3%
Project contains a mix of uses; where residential is the dominant use and the retail gross floor area is greater than 10% of total	-1%
Pedestrian networks (sidewalks) connecting to land uses within the site	-4%
Total Reductions	8%

Appendix

Site Photos

Rimey-Hom Big C Big C	Creek DRI	4A Job No.: 019783000 KHA Rep.: ARK
3169 Holcomb Bridge Road Norcross, GA 30071	graph Sheet	Date: July 9, 2008 Page: 2 of 2
Dhoto No E		
Remarks: Eastbound along SR 137 (Holiday Road) towards Project Site	Remarks:	
Photo No. 7	Photo No 8	
	8 . ON	
Remarks:	Remarks:	

Future Roadway/Intersection Projects

Page 9 of 15

GEORGIA DEPARTMENT OF TRANSPORTATION	LUNSIKUCIJON WUKK PROGRAM LISTING OF PROJECTS BY COUNTY
--------------------------------------	--

	162430-	SR 347/FRIENDSHIP &	THOMPSON MILL RD FM 1-985 TO SR 211		Phase Accounting #	Phase	Fund	Status	Prog_Date
				Reference: cp. Azdam	PESTP-2984-00(001) RWSTP-2984-00(001)	PE ROW	Q25 LY10	AUTHORIZED AUTHORIZED	1994 2007
	Hab	Contractormull	Let:	Field District1	RWSTP-2984-00(001)	ROW	020	AUTHORIZED	2000
	Length:	Primary Work Type:	Widening	Cong Dist9	RWSTP-2984-00(001)	ROW	L200	PRECST	2008
	2	TLP.: GH-007	Mgr.Haithcock, Mike	ì	RWSTP-2984-00(001)	ROW	HY10	AUTHORIZED	2007
	Concept.WIDE	N & RECONST			RWSTP-2984-00(001)	ROW	Q20	AUTHORIZED	2007
	•				STP00-2984-00(001)	CST	L200	PRECST	2010
					STP00-2984-00(001)	CST	LY10S	PRECST	2010
	LGPA. REQ HA	LLL & GWINNETT DO UT	TILITIES 4-14-98 RESCISSION LETTER SENT TO (WINNEFT & HAI	LI 11-4-05.				
Ý	170735.	SK 347/FRIENDSHIP RI	D FM 1-985 TO CR 1293/MCEVER RD - PHASE I		51 8	R.	۳ <u>1</u>	1	F
4	Hall	Contractor well		Raference.		10256	Din J	SUITUS	ring_uare
	1	Delaware Minul. There	18.3	CD- 034700	1221 F-2028-41014	IJ	53	AUTRONIZED	866T
	L'EUZAR.	FILLING WORK LYPE.			RWSTP-2688-00(004)	ROW	1200	PRECST	2008
		410~US : 7 T.I	Mgr.K.antner, Nei	Field Unstract:1	STP00-2688-00(004)	CST	L200	PRECST	2008
	Concept:ADD4 LGPA: HALL S	kr(med 4) GN 7-10-89 UTIL CITTES	SGN 6-20-89 UTILITIES	Cong Dist:9					
	A000465	GAINESVILLE REMED	JATION		Рhase Accountizg #	Pha	e e	čund Status	Prof. Date
	Hall	Contractor.null	Let:	Reference:	USTA0-GAIN-ES(000)	ð	Į	60431 PRECST	2008
	Length:	Primary Work Type:	Miscellaneous Junprovements	SR: 000000		i	•		
	¥.	TIP.: well	Migr.Bowen, Angie	Field District.1					
	Conceptrull			Cong Dist9					
	LGPA: NOT AP	PLICABLE							
	M003076	SR 136 @ CHESTATEE	i river & @ etowah river - bridge rehab		Dharn Accounting to	Dharr		Status.	Dance Victo
	Hall	Contractor null	Let	Reference:	PESTP-MORS_CMC76)	PE DE	1.240	AUTHORIZED	7006
	Length:	Primary Work Type:	Bridges	SR: 013600	CSSTP-MOR-MOR-MORE	LST LST	1240	PRECST	1 INTE
	24	TIP. mull	Mgr:Clements, Mike	Field District.l					
	Concept:BR RE	TEAD		Cong Dist9					
	LGPA: NOT AP	PLICABLE							
	M003726	OR HALL CO SR 53 (6)	SR 369 EXTEND LEFT TURN LANE		2 2	B	ц. Т.		Bare Reds
	Hall	Contractor:M&E	Let:06/29/1905	Reference:	CSAP0.M003-01726)	CST	0467	AUTHORIZED	7008
	Length:	Frimary Work Type:	Turn Langs	SR: 005300					
) Þ	TIP: aul	Mgr.Crim, David	Field District.1					

Report

Trip Generation and Volume Worksheets

Vaterworks and Whidby	Friendship Road, betwee	in McEver and SR 13	McEver Road, south	of Friendship Road
139	County FIPS	13	County FIPS	139
401	TC Number	40	3 TC Number	465
1391034700	RCLink	139103470	D RCLink	1392129300
0	Beginning Milepoint	2.4	Beginning Milepoint	ti 0
2.47	Ending Milepoint	3.0	3 Ending Milepoint	1.04
1.24	Midpoint	2.7	3 Midpoint	0.52
je	2007 Truck Percentage	a)	2007 Truck Percent	tage
2940	2007 AADT	1237	0 2007 AADT	6320 / 6320 / Sum: 1
Actual	2007 Count Type	Estimate	2007 Count Type	Actual / Actual
NonDir	2007 Direction	NonDir	2007 Direction	North / South
je	2006 Truck Percentage	d)	2006 Truck Percent	tage
3990	2006 AADT	1367	0 2006 AADT	6710 / 6410 / Sum: 1
Estimate	2006 Count Type	Actual	2006 Count Type	Actual / Actual
NonDir	2006 Direction	NonDir	2006 Direction	North / South
4250	2005 AADT	1447	0 2005 AADT	6090 / 6380
Actual	2005 Count Type	Actual	2005 Count Type	Actual / Actual
NonDir	2005 Direction	NonDir	2005 Direction	North / South
2143 / 2109	2004 AADT	860	5 2004 AADT	12175
Actual / Actual	2004 Count Type	Actual	2004 Count Type	Estimate
North / South	2004 Direction	NonDir	2004 Direction	NonDir
3363	2003 AADT	1254	9 2003 AADT	6190 / 5775
Actual	2003 Type Count	Actual	2003 Type Count	Actual / Actual
NonDir	2003 Direction	NonDir	2003 Direction	North / South
3380	2002 AADT	927	8 2002 AADT	4233 / 4272
Actual	2002 Count Type	Estimate	2002 Count Type	Estimate / Estimate
NonDir	2002 Direction	NonDir	2002 Direction	North / South

2006 Count Type

2006 Truck Percentage

2006 AADT

2007 Direction

2007 Count Type

2007 AADT

2007 Truck Percentage

	3120	
	-	Ì
	Ē	į
	4	
	ഗ്	į
1	Ξ.	į
	o	
	÷	1
- 1	4	ŝ

2002 Count Type 2002 Direction

.....

2003 Type Count

2003 Direction

2002 AADT

2004 Count Type

2004 Direction

2003 AADT

2006 Direction 2005 AADT 2005 Count Type

2005 Direction 2004 AADT

320 / Sum: 12640

Friendship Rd, btwn N Waterworks and County FIPS

RCLink Beginning Milepoint

TC Number

Ending Milepoint

Midpoint

Source:	GDOT
Location:	Friendship Rd
5	est of N Waterworks
Route Type:	State
Station:	GDOT # 401

Count Vear	Volume	Growth Rafe
COULT FOR		OLOW LI LALO
2002	3,380	
2003	3,363	-0.50%
2004	4,252	26.43%
2005	4,250	-0.05%
2006	3,990	-6.12%
2007	2,940	-26.32%

Avg.	-2.75%	ates 2002-2007	Avg. 1 Year R
	-26.32%	2,940	2007

	35.26%	-31.43%	68.16%	-5.53%	-9.51%
9,278	12,549	8,605	14,470	13,670	12,370
2002	2003	2004	2005	2006	2007

1 Year Rates 2002-2007 5.92%		-
1 Year Rates 2002-2007	5.92%	
	1 Year Rates 2002-2007	

ource:	GDOT
ocation:	McEver
Sou	th of Friendship Rd
oute Type	State
tation:	GDOT # 465

n: Friendship Rd Between McEver and SR 13 ype: State

GDOT

GDOT # 403

Route Type:

Station:

Location:

Source:

Growth Rate

Volume

Count Year

Count Year	Volume	Growth Rate
2002	8,505	
2003	11,965	40.68%
2004	12,175	1.76%
2005	12,470	2.42%
2006	13,120	5.21%
2007	12,640	-3.66%
Avg. 1 Year	Rates 2002-2007	8.25%

Hall County Population Annual Growth (1990-2000): Hall County Population Annual Growth Est. (2000-2006):

Annual Growth 4.29% 4.46%

3.0% CHOSEN GROWTH RATE: K:\Project\ATL_TPTO\019783000 Big Creek DRI, Buford\Big Creek DRI_City of Buford\Phase 2\analysis\BigCreek Analysis.xls

TR	TABLE 1 Big Creek IP GENERATION	7						
Land Use	Intensity	Daily	AM	[Peak H	our	PM	[Peak H	our
		Trips	Total	In	Out	Total	In	Out
Proposed Site Traffic								
210 Single-Family Detached	64 d.u.	069	54	14	40	72	45	27
260 Recreational Homes	620 d.u.	1,959	66	66	33	161	66	95
820 Shopping Center	20,000 s.f.	859	21	13	8	75	36	39
931 Quality Restaurant	10,000 s.f.	006	~	4	4	75	50	25
Gross Trips		4,408	182	97	85	383	197	186
Residential Trips		2,649	153	80	73	233	111	122
Mixed-Use Reductions		-176				-16	8-	8
Adjusted Residential Trips		2,473	153	80	73	217	103	114
		4	i	1	I		1	
Retail Trips		859 2	21	[]	∞	75	36 2	39
Mixed-Use Reductions		-96	¢		s	သု နိ	, ل	ς, ;
Pass by Reductions (Limited by GRIA 10%6 Rule) Adjusted Restail Trine		596- 175	0 1 0	0 [0 %	-21	2- C	-12 CC
		27-	1	2-1	,	2	F-1	1
Restaurant Trips		006	8	4	4	75	50	25
Mixed-Use Reductions		-90				Ŷ	6-	-6
Pass By Reductions (Limited by GRTA 10% Rule)		-626	0	0	0	-21	-12	Ŷ
Adjusted Restaurant Trips		184	8	4	4	46	29	11
Mixed-Use Reductions - TOTAL		-352	0	0	0	-32	-20	-19
Pass-By Reductions - TOTAL		-1,224	0	0	0	-42	-21	-20
New Trips		2,832	182	97	85	309	156	147
Driveway Volumes		4,056	182	97	85	351	177	167

k: \project\atl_pto\019783000 big creek dri, buford\big creek dri_city of buford\phase 2\analysis\fbigcreek analysis.xls}trip generation

ι

Overall Internal Capture = 7.99%

		Land	l Use		
Category	A	Ð	o	D	Total
Enter	1,228	0	782	0	2,010
Exit	1,246	0	800	0	2,046
Totai	2,474	0	1,582	0	4,056
Single Use Trip Gen Estimate	2 RED	c	1 758	c	4 408
	100014	>	1, 22	Š	A = 1 6 4

NET EXTERNAL TRIPS FOR MULTI-USE DEVELOPMENT

BigCreek Analysis.xls

Overall Internal Capture = 8.36%

 Land Use	B C D Total	3 0 56 0 159	4 0 78 0 192	7 D 134 0 351	3 0 150 0 383	
	Category	Enter 10	Exit 1.	Total 2	Single Use Trip Gen Estimate 2:	

NET EXTERNAL TRIPS FOR MULTI-USE DEVELOPMENT

BigCreek Analysis.xls

INTERSECTION VOLUME DEVELOPMENT

SR 347 Friendship Road @ SR 13 (Buford Highway) AM PEAK HOUR

	SR 13 (Buford H	ighway)	SR 13 (Buford H	ighway)	Fr	endship R	oad	Fr	iendship R	oad
	I	Vorthbour	d	5	Southboun	d		Eastbound	<u>1</u>		Westboun	d
Description	Left	Through	Right	Left	Through	Right	Left	Through	Right	Left	Through	Right
Observed 2008 Volumes	46	66	127	177	176	114	50	287	32	167	382	29
Peak Hour Factor		0.84			0.88			0.87			0.88	
Annual Growth Rate	3.0%	3.0%	3.0%	3.0%	3.0%	3.0%	3.0%	3.0%	3.0%	3.0%	3.0%	3.0%
Growth Factor	1.194	1.194	1.194	1.194	1.194	1.194	1.194	1.194	1.194	1.194	1.194	1.194
2014 Background Traffic	55	79	152	211	210	136	60	343	38	199	456	35
Project Trips												
Trip Distribution IN	15%										35%	
Trip Distribution OUT							-	35%	15%			
Residential Trips	12	0	0	0	0	0	0	26	11	0	28	0
Trip Distribution IN	15%										35%	
Trip Distribution OUT								35%	15%			
Non-Residential Trips	3	0	0	0	0	0	0	4	2	0	6	0
Total Project Trips	15	0	0	0	0	0	0	30	13	0	34	0
											<u> </u>	
2014 Buildout Total	70	79	152	211	210	136	60	373	51	199	490	35

PM PEAK HOUR

	SR 13 (Buford H	ighway)	nway) SR 13 (Buford Highway) Friendship Road						Friendship Road			
	<u>N</u>	Northbour	<u>ıd</u>	<u>s</u>	outhbour	<u>id</u>		Eastboun	<u>d</u>		Westboun	d	
Description	Left	Through	Right	Left	Through	Right	Left	Through	Right	Left	Through	Right	
					ł								
Observed 2008 Volumes	102	333	223	87	133	14	152	443	55	154	423	253	
Peak Hour Factor		0.80			0.72			0.92			0.85		
Annual Growth Rate	3.0%	3.0%	3.0%	3.0%	3.0%	3.0%	3.0%	3.0%	3.0%	3.0%	3.0%	3.0%	
Growth Factor	1.194	1.194	1.194	1.194	1.194	1.194	1.194	1.194	1.194	1.194	1.194	1.194	
2014 Background Traffic	122	398	266	104	159	17	181	529	66	184	505	302	
Project Trips													
Trip Distribution IN	15%										35%		
Trip Distribution OUT			· · · · · · · · · · · · · · · · · · ·					35%	15%				
Residential Trips	15	0	0	0	0	0	0	40	17	0	36	0	
Trip Distribution IN	15%										35%		
Trip Distribution OUT								35%	15%				
Non-Residential Trips	8	0	0	0	0	0	0	12	5	0	19	0	
Total Project Trips	23	0	0	0	0	0	0	52	22	0	55	0	
2014 Buildout Total	145	398	266	104	159	17	181	581	88	184	560	302	

k:\project\all_tplo\019783000 big creek dri, buford\big creek dri_city of buford\phase 2\analysis\{bigcreek analysis.xls}int #1

9/2/2008 11:59

INTERSECTION VOLUME DEVELOPMENT

SR 347 / Friendship Road @ McEver Road AM PEAK HOUR

	McEver Road McEver Road Holiday Road						ad	Friendship Road				
	<u> </u>	orthbour	ıd	5	outhboun	d		Eastbound	<u>1</u>	<u> </u>	Westboun	<u>d</u>
Description	Left	Through	Right	Left	Through	Right	Left	Through	Right	Left	Through	Right
Observed 2008 Volumes	9	177	322	102	368	39	. 10	80	18	375	127	39
Peak Hour Factor		0.81			0.92			0.79			0,91	
Annual Growth Rate	3.0%	3.0%	3.0%	3.0%	3.0%	3.0%	3.0%	3.0%	3.0%	3.0%	3.0%	3.0%
Growth Factor	1.194	1.194	1.194	1.194	1.194	1.194	1.194	1.194	1.194	1.194	1.194	1.194
2014 Background Traffic	11	211	384	122	439	47	12	96	21	448	152	47
Project Trips												
Trip Distribution IN	25%					5%					50%	
Trip Distribution OUT							5%	50%	25%			
Residential Trips	20	0	0	0	0	4	4	37	18	0	40	0
Trip Distribution IN	25%					5%		·			50%	
Trip Distribution OUT							5%	50%	25%			
Non-Residential Trips	4	0	0	0	0	1	1	6	3	0	9	0
Total Project Trips	24	0	0	0	0	5	5	43	21	0	49	0
2014 Buildout Total	35	211	384	122	439	52	17	139	42	448	201	47

PM PEAK HOUR

	N N	icEver Ro: Northboun	ad id	N	icEver Ro Southbour	ad d	F	loliday Ro Eastboun	ad 1	Fri	endship R Westboun	oad d
Description	Left	Through	Right	Left	Through	 Right	Left	Through	Right	Left	Through	 Right
Observed 2008 Volumes	25	408	381	80	170	24	92	264	46	303	157	114
Peak Hour Factor		0.90			0.91			0.71			0,94	
Annual Growth Rate	3.0%	3.0%	3.0%	3.0%	3.0%	3.0%	3.0%	3.0%	3.0%	3.0%	3.0%	3.0%
Growth Factor	1.194	1.194	1,194	1.194	1.194	1.194	1.194	1.194	1.194	1.194	1.194	1.194
2014 Background Traffic	30	487	455	96	203	29	110	315	55	362	187	136
Project Trips												
Trip Distribution IN	25%					5%					50%	
Trip Distribution OUT							5%	50%	25%			
Residential Trips	26	0	0	0	0	5	6	57	29	0	52	0
Trip Distribution IN	25%		·			5%					50%	
Trip Distribution OUT							5%	50%	25%			
Non-Residential Trips	13	0	0	0	0	3	2	17	8	0	27	0
Total Project Trips	39	0	0	0	0	8	8	74	37	0	79	0
2014 Buildout Total	69	487	455	96	203	37	118	389	92	362	266	136

k:/project/atl_tpto/019783000 big creek dri, buford/big creek dri_city of buford/phase 2/analysis/[bigcreek analysis:xls]int #2

9/2/2008 11:59

INTERSECTION VOLUME DEVELOPMENT

:

SR 347 / Holiday Road @ McEver Road AM PEAK HOUR

				Proposed Driveway			Н	oliday Roa	ıd	H	oliday Road Vestbound Through Right 175 0.87		
	Ν	<u>lorthboun</u>	d	5	Southboun	d	J	Eastbound	1	1	Westboun	d	
Description	Left	Through	Right	Left	Through	Right	Left	Through	Right	Left	Through	Right	
Observed 2008 Volumes								108			175		
Peak Hour Factor					0,83			0.87			0.87		
Annual Growth Rate	3.0%	3.0%	3.0%	3.0%	3.0%	3.0%	3.0%	3.0%	3.0%	3.0%	3.0%	3.0%	
Growth Factor	1,194	1.194	1.194	1.194	1,194	1.194	1.194	1.194	1.194	1.194	1.194	1.194	
2014 Background Traffic	0	0	0	12	0	6	6	129	0	0	209	6	
Project Trips													
Trip Distribution IN							20%				Ì	80%	
Trip Distribution OUT				80%		20%					1		
Residential Trips	0	0	0	58	0	15	16	0	0	0	0	64	
Trip Distribution IN							20%					80%	
Trip Distribution OUT				80%		20%							
Non-Residential Trips	0	0	0	9	0	2	3	0	0	0	0	14	
Pass-By Trips	0	0	0	0	0	0	0	0	0	0	0	0	
Total Project Trips	0	0	0	67	0	17	19	0	0	0	0	78	
2014 Buildout Total	0	0	0	79	0	23	25	129	0	0	209	84	

PM PEAK HOUR

				Prop	osed Driv	eway	Н	oliday Ro	nd	H	loliday Roa	ıd
	<u>N</u>	<u>lorthboun</u>	<u>id</u>	5	Southboun	d		Eastboune	4	-	Westbound	<u>1</u>
Description	Left	Through	Right	Left	Through	Right	Left	Through	Right	Left	Through	Right
Observed 2008 Volumes								437			206	
Peak Hour Factor					0.87			0.92			0.87	
Annual Growth Rate	3.0%	3.0%	3.0%	3.0%	3.0%	3.0%	3.0%	3.0%	3.0%	3.0%	3.0%	3.0%
Growth Factor	1.194	1.194	1.194	1.194	1.194	1.194	1.194	1.194	1.194	1.194	1,194	1.194
2014 Background Traffic	0	0	0	25	0	5	10	522	0	0	246	30
Project Trips												
Trip Distribution IN							20%					80%
Trip Distribution OUT				80%		20%						
Residential Trips	0	0	0	91	0	23	21	0	0	0	0	82
Trip Distribution IN							20%					80%
Trip Distribution OUT				80%		20%	-					
Non-Residential Trips	0	0	0	26	0	7	11	0	0	0	0	42
Pass-By Trips	0	0	0	15	0	6	15	-15	0	0	-6	6
Total Project Trips	0	0	0	132	0	36	47	-15	0	0	-6	130
											I	
2014 Buildout Total	0	0	0	157	0	41	57	507	0	0	240	160

k:\project\atl_tpto\019783000 big creek dri, buford/big creek dri_city of buford/phase 2\analysis\{bigcreek analysis.xls}int #3

9/2/2008 11:59

Traffic Counts

File Name	: kh072901
Site Code	: 00000001
Start Date	: 7/29/2008
Page No	:1

,						Gi	roups Pr	inted- VEHIC	CLES - TR	UCKS							
		US	23/13			FRIEND	SHIP RE)		US:	23/13			FRIEND	SHIP RE)	
		Sout	nbound			West	bound			North	bound			East	oound		
Start Time	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Int. Total
07:00 AM	24	29	37	90	25	95	6	126	7	18	39	64	7	81	13	101	381
07:15 AM	52	43	37	132	29	91	5	125	8	18	29	55	13	87	4	104	416
07:30 AM	39	45	24	108	33	97	10	140	11	11	22	44	13	91	9	113	405
07:45 AM	49	41	27	117	60	85	3	148	10	22	39	71	16	95	6	117	453
Total	164	158	125	447	147	368	24	539	36	69	129	234	49	354	32	435	1655
08:00 AM	37	47	26	110	45	109	11	165	17	15	37	69	8	114	13	135	479
08:15 AM	33	38	19	90	37	73	5	115	9	17	30	56	7	80	19	106	367
08:30 AM	39	34	12	85	41	102	10	153	14	26	34	74	6	86	7	99	411
08:45 AM	45	42	22	109	49	77	12	138	15	23	33	71	10	81	15	106	424
Total	154	161	79	394	172	361	38	571	55	81	134	270	31	361	54	446	1681
a																	
04:00 PM	11	32	6	49	25	66	21	112	11	46	33	90	22	88	11	121	372
04:15 PM	16	34	9	59	30	71	23	124	13	52	40	105	23	99	14	136	424
04:30 PM	18	22	12	52	33	100	37	170	19	59	34	112	40	119	16	175	509
04:45 PM	24	37	1	62	33	99	56	188	24	75	49	148	39	103	12	154	552
Total	69	125	28	222	121	336	137	594	67	232	156	455	124	409	53	586	1857
06-00 D3 (20	20	1	40	45	126	70	244	20	77	*0	127	17	100	12	100	1 101
05:00 PM	20	20 40	1	49	45	120	75	244	20	70	40	157	37 40	120	21	1/0	606
05.15 PIVI	31	42	0	01 42	40	100	10	207	20	102	38	100	46	102	10	1/5	029
05:50 PIVI	12 6	20	4	42	20	109	40	191	28	103	20	207	28	105	14	145	282
UJ.4J FIVI		122	12	21	160	410	202	1/0	01	215	20	611	162	107	62	470	478
i otar	07	121	15	205	100	417	255	012	92	515	204	011 }	105	447	02	072	2290
Grand Total	456	565	245	1266	600	1484	432	2516	250	697	623	1570	367	1571	201	2139	7491
Appreh %	36	44.6	19.4	1200	23.8	59	172	2010	15.9	44 4	39.7	10/0	17.2	73.4	94	2137	,,,,,
Total %	61	7.5	3.3	16.9	20.0	19.8	5.8	33.6	33	93	83	21	49	21	27	28.6	
VEHICLES	454	557	242	1253	589	1475	425	2489	249	693	618	1560	364	1567	195	2126	7428
% VEHICLES	99.6	98.6	98.8	99	98.2	99.4	98.4	98.9	99.6	99.4	99.2	99.4	99.2	99.7	97	99.4	99.2
TRUCKS	2	8	3	13	11		7	27	1	4	5	10	3	4	6	13	63
% TRUCKS	0.4	1.4	1.2	1	1.8	0.6	1.6	1.1	0.4	0.6	0.8	0.6	0.8	0.3	3	0.6	0.8
		/		- ,)							-		

File Name	: kh072901
Site Code	: 00000001
Start Date	: 7/29/2008
Page No	: 3

		US South	23/13 1bound			FRIEND West	SHIP RE)		US North	23/13 bound		·	FRIEND Eastl	SHIP RE Iound)	
Start Time	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Int. Total
Peak Hour Analysi	is From 07	:00 AM	to 08:45	AM - Peak	1 of 1												
Peak Hour for Entit	re Intersec	tion Beg	ins at 07	:15 AM								,					
07:15 AM	52		37	132													
07:30 AM	39	45	24	108	33	97	10	140	11	11	22	44	13	91	9	113	405
07:45 AM	49	41	27	117	60	85	3	148	10	22	39	71	16	95	6	117	453
08:00 AM	37	47	26	110	45	109	11	165	17	15	37	69	8	114	13	135	479
Total Volume	177	176	114	467	167	382	29	578	46	66	127	239	50	387	32	469	1753
% App. Total	37.9	37.7	24.4		28.9	66.1	5		19.2	27.6	53.1		10.7	82.5	6.8		
PHF	.851	.936	.770	.884	.696	.876	.659	.876	.676	.750	.814	.842	.781	.849	.615	.869	.915

File Name	: kh072901
Site Code	: 00000001
Start Date	: 7/29/2008
Page No	: 4

[US	23/13			FRIEND	SHIP RE)		US	23/13			FRIEND	SHIP RE)	1
		South	bound			West	bound			North	bound			East	bound		
Start Time	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Int. Total
Peak Hour Analys	is From 04	:00 PM t	o 05:45 I	PM - Peak 1	of 1												
Peak Hour for Entit	ire Interse	ction Beg	ins at 04	:45 PM													
04:45 PM	24	37	1	62	33	99	56	188	24	75	49	148	39	103	12	154	552
05:00 PM	20	28	1	49	45	126		244						126		176	
05:15 PM	31	42	8	81	40	89	78	207	30	78	58	166	48	111	16	175	629
05:30 PM	12	26	4	42	36	109	46	191	28	103	76	207	28	103	14	145	585
Total Volume	87	133	14	234	154	423	253	830	102	333	223	658	152	443	55	650	2372
% App. Total	37.2	56.8	6		18.6	51	30.5		15.5	50.6	33.9		23.4	68.2	8.5		
PHF	.702	.792	.438	.722	.856	.839	.811	.850	.850	.808	.734	.795	.792	.879	.859	.923	.943

File Name	: KH072902
Site Code	: 00000002
Start Date	: 7/29/2008
Page No	: 1

						G	roups Pr	inted- VEHI	<u>CLES - TF</u>	RUCKS							,
		MC EV	/ER RD			FRIEND	SHIP RE	F .		MC EV	/ER RD			FRIEND	SHIP RE)	
		South	bound			West	bound			North	bound			East	bound		
Start Time	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Int. Total
07:00 AM	25	101	11	137	115	25	8	148	1	29	71	101	2	21	4	27	413
07:15 AM	31	102	5	138	98	36	5	139	3	29	84	116	0	15	6	21	414
07:30 AM	23	77	8	108	83	28	11	122	2	71	84	157	4	17	5	26	413
07:45 AM	23	88	15	126	79		15	132	3	48	83	134	4	27	3	34	426
Total	102	368	39	509	375	127	39	541	9	177	322	508	10	80	18	108	1666
				!		.				~ ~				~ 1		25	
08:00 AM	14	61	10	85	90	27	13	130	4	31	11	112	8	21	0	33	362
08:15 AM	26	61	7	94	82	28	6	116		22	62	98	/	24	2	34	342
08:30 AM	29	65	10	104	72	27	12	111	4	<i>33</i>	83	120	2	29	3	34	309
08:45 AM	23	- 10		89	202		11	91	<u> </u>	28	202	90	10	19	3	107	1267
I otal	92	248	32	372	302	104	42	448		127	282	420	19	95	15	127	1507
04-00 PM	11	35	2	48	56	34	26	116	6	52	66	124	21	45	5	71	359
04-15 PM	18	30	5	53	77	35	26	138	5	68	86	159	16	55	5	76	426
04·30 PM	24	40	3	67	81	42	29	152	8	85	98	191	29	67	9	105	515
04:45 PM	13	45	12	70	65	47	27	139	3	119	103	225	7	42	15	64	498
Total	66	150	22	238	279	158	108	545	22	324	353	699	73	209	34	316	1798
	1																
05:00 PM	26	32	4	62	79	35	35	149	7	81	88	176	27	58	6	91	478
05:15 PM	17	53	5	75	78	33	23	134	7	123	92	222	29	97	16	142	573
05:30 PM	17	57	2	76	86	34	35	155	7	110	59	176	30	45	6	81	488
05:45 PM	15	27	2	44	59	36	26	121	7	88	101	196	11	41	12	64	425
Total	75	169	13	257	302	138	119	559	28	402	340	770	97	241	40	378	1964
	,																
Grand Total	335	935	106	1376	1258	527	308	2093	70	1030	1297	2397	199	623	107	929	6795
Apprch %	24.3	68	7.7		60.1	25.2	14.7		2.9	43	54.1		21.4	67.1	11.5		
Total %	4.9	13.8	1.6	20.3	18.5	7.8	4.5	30.8	1	15.2	19.1	35,3	2.9	9.2	1.6	13.7	((00
VEHICLES	329	926	106	1361	1230	524	306	2060	68	1018	1268	2354	198	619	107	924	6699
% VEHICLES	98.2	99	100	98.9	97.8	99.4	99.4	98.4	97.1	98.8	97.8	98.2	99.5	99.4	100	99.5	98.6
TRUCKS	6	9	0	15	28	3	2	33		12	29	43		4	U	2	96
% TRUCKS	1.8	1	0	1,1	2.2	0.6	0.6	1.6	2.9	1,2	2.2	1.8	0.5	0.6	0	0.5	1.4

: KH072902
: 00000002
: 7/29/2008
: 3

		MC EV South	VER RD			FRIEND	SHIP RE)		MC E Norti	VER RD			FRIENI	SHIP RE)	
Start Time	Left	Thru	Right	App. Totai	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Int. Total
Peak Hour Analysi	is From 0'	7:00 AM	to 08:45	AM - Peak	1 of 1												
Peak Hour for Entit	ire Interse	ction Beg	gins at 07	:00 AM													
07:00 AM	25	101	11	137	115			148									
07:15 AM	31	102	5	138	98	36	5	139	3	29	84	116	0	15	6	21	414
07:30 AM	23	77	8	108	83	28	11	122	2	71	84	157	4	17	5	26	413
07:45 AM	23	88	15	126	79	38	15	132	3	48	83	134	4	27	3	34	426
Total Volume	102	368	39	509	375	127	39	541	9	177	322	508	10	80	18	108	1666
% App. Total	20	72.3	7.7		69.3	23.5	7.2		1.8	34.8	63.4		9.3	74.1	16.7		
PHF	.823	.902	.650	.922	.815	.836	.650	.914	.750	.623	.958	.809	.625	.741	.750	.794	.978

File Name	: KH072902
Site Code	: 00000002
Start Date	: 7/29/2008
Page No	: 4

		MC EV Sout	/ER RD			FRIEND West	SHIP RE)		MC E' North	VER RD			FRIEND East	SHIP RE)	
Start Time	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Int. Total
Peak Hour Analysi	is From 04	:00 PM (to 05:45 I	PM - Peak 1	of 1												
Peak Hour for Enti	ire Intersed	ction Beg	ins at 04	30 PM													
04:30 PM	24	40	3	67	81			152	8				29				
04:45 PM	13	45	12	70	65	47	27	139	3	119	103	225	7	42	15	64	498
05:00 PM	26	32	4	62	79	35	35	149	7	81	88	176	27	58	6	91	478
05:15 PM	17	53	5	75	78	33	23	134	7	123	92	222	29	97	16	142	573
Total Volume	80	170	24	274	303	157	114	574	25	408	381	814	92	264	46	402	2064
% App. Total	29.2	62	8.8		52.8	27.4	19.9		3.1	50.1	46.8		22.9	65.7	11.4		
PHF	.769	.802	.500	.913	.935	.835	,814	.944	.781	.829	.925	.904	.793	.680	.719	.708	.901

FRIENDSHIP RD BYW OF WHIDBY RD AND MCEVER RD

72904	age	WB		28	2	16	16	6	6	44	95 95	138	217	294	322		332	325	274	248	205	197	186	164	114	94	76	43	3474		11:00	322	12:00	332
KHO	Week Avei	EB		20	4	ဓ	2	12	14	53	65	92	161	188	229		260	235	258	288	329	320	396	253	167	142	9	68	3731	7205	11:00	929	18:00	396
		WB		26	21	თ	14	12	13	36	54	133	191	295	318		338	343	265	233	175	145		120	92	<u>6</u> 0	57	22	3121		11:00	318	13:00	343
	Sun	EB		50	36	32	23	14	6	16	09	84	145	211	242		262	228	273	292	290	351	453	277	180	140	09	40	3775	6896	11:00	242	18:00	453
		WB		39	2	22	18	7	22	52	136	144	243	293	327		326	307	284	262	203	184	138	161	95	97	8	50	3544		11:00	327	12:00	326
	Sat	EB		45	44	28	16	11	19	30	20	100	177	165	216		259	242	244	285	327	284	358	293	171	155	118	94	3751	7295	11:00	216	18:00	358
		WB		*	*	*	*	*	*	*	*	*	*	*	*		*	*	*	*	238	262	268	210	155	117	8	57	1360				17:00	262
	Fri	EB		*	*	*	*	*	*	*	*	*	*	*	*		*	*	*	*	370	326	377	190	150	132	95	69	1709	3069			18:00	377
		WB		*	*	*	*	*	*	*	*	*	*	*	*		*	*	*	*	*	*	*	*	*	*	*	*	0					
	Thu	EB		*	*	*	*	*	*	*	*	*	*	*	*		*	*	*	*	*	*	*	*	*	*	*	*	0	0				
		WB		*	*	*	*	*	*	*	*	*	*	*	*		*	*	*	*	*	*	*	*	*	*	*	*	0					
	Wed	EB		*	*	*	*	*	*	*	*	*	*	*	*		*	*	*	*	*	*	*	*	*	*	*	*	0	0				
		NB		*	*	*	*	*	*	*	*	*	*	*	*		*	*	*	*	*	*	*	*	*	*	*	*	0					
	Tue	EB		*	*	*	*	*	*	*	*	*	*	*	*		*	*	*	*	*	*	*	*	*	*	*	*	0	0				
	~	NB NB		*	*	*	*	*	*	*	*	*	*	*	*		*	*	*	*	*	*	*	*	*	*	*	*	0					
	21-Jul-0	EB		*	*	*	*	*	*	*	*	*	*	*	*		*	*	*	*	*	*	*	*	*	*	*	*	0	0				
	Start	Time	12:00	AM	01:00	02:00	03:00	04:00	02:00	00:90	02:00	08:00	00:60	10:00	11:00	12:00	ΡM	01:00	02:00	03:00	04:00	05:00	00:90	00:20	08:00	00:60	10:00	11:00	Lane	Day	AM	Vol	M	геак Vol.

Page 1

072904	vB WB		<u>-</u>	4	4	7	14	17	153	178	268	287	226		237	221	211	206	166	155	142	103	66	75	46	23	2922		10:00	287	12:00	237
KH(VVeek AVe FB	1	<u>ο</u> α	o ic) 1	11	32	09	96	128	150	159	185		224	213	222	248	305	318	237	132	89	70	43	34 8	2989	5911	11:00	185	17:00	318
	B	*	*	*	*	*	*	*	*	*	*	*	*		*	*	*	*	*	*	*	*	*	*	*	*	0					
4	Sun FB	*	*	*	*	*	*	*	*	*	*	*	*		*	*	*	*	*	*	*	*	*	*	*	*	0	0				
	Ą	*	*	*	*	*	*	*	*	*	*	*	*		*	*	*	*	*	*	*	*	*	*	*	*	0					
10	EB Cat	*	*	*	*	*	*	*	*	*	*	*	*		*	*	*	*	*	*	*	*	*	*	*	*	0	0				
	MB	ç Ç	2 1-	- 00	о О	ω	18	61	154	179	257	313	275		294	314	248	254	*	*	*	*	*	*	*	*	2408		10:00	313	13:00	314
Ľ	EB FII	ע ד ו	24	· /-	. ω	14	26	52	06	120	167	175	223		258	235	264	269	*	*	*	*	*	*	*	*	1927	4335	11:00	223	15:00	269
	NB	17	<u>-</u> α) (C	0	ດ	6	82	148	195	250	229	199		222	178	189	210	166	147	167	9	95	73	47	24	2764		00:60	250	12:00	222
F	EB INU	1 4	2	. 4	4	7	24	09	96	114	139	149	153		203	209	202	249	327	228	213	127	86	72	44	26	2775	5539	11:00	153	16:00	327
	WB	1	4	4	4	ດ	14	83	146	185	385	460	285		230	212	204	193	163	169	147	111	110	94	58	25	3312		10:00	460	12:00	230
14/2-1	FB VVed	2	<u>1</u> (c	9 4	. (1	7	37	52	102	137	154	144	186		233	197	253	307	374	391	356	154	101	74	20	25	3367	6679	11:00	186	17:00	391
	R	Ę	2 @	9 4	. U	2	14	82	163	165	272	260	214		246	223	222	220	194	150	111	06	97	65	39	22	2873		00:60	272	12:00	246
¢: F	FB IUe	- 17	: 6	i 4	. 01	12	25	71	63 03	140	137	154	180		210	216	214	259	307	414	213	68 80	71	58	45	42	2985	5858	11:00	180	17:00	414
0	×8		200	20	с С	S	14	76	156	165	174	173	159		195	178	194	154	140	155	145	121	95	67	4	21	2452		00:60	174	12:00	195
	EB 28-JUI-U) (<u>o</u> œ	9 4	. ო	15	47	99	101	131	155	175	185		214	206	175	158	213	239	165	159	87	75	g	43	2668	5120	11:00	185	17:00	239
1-10	Time	12:00 AM	01.00	00.20	03:00	04:00	05:00	00:00	00:20	08:00	00:60	10:00	11:00	12:00	ЫΜ	01:00	02:00	03:00	04:00	05:00	00:00	00:20	08:00	00:60	10:00	11:00	Lane	Day	AM Peak	Vol.	PM Yeed	Vol.

Comb. Total

FRIENDSHIP RD BYW OF WHIDBY RD AND MCEVER RD

Page 2

Greater Traffic Company

Not Calculated

ADT

Capacity Analyses – Existing 2008 Conditions

	٦	-	\mathbf{k}	*	-	×	•	t	1	×	ļ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL.	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	•	*	٦	•	7	ሻ	ł	7	ሻ	۴	7
Volume (vph)	50	287	32	167	382		46	66	127	177	176	114
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	6.0	6.0	6,0	6.0	6.0	6,0	6.0	6.0	6.0	6.0	6.0	6.0
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
	1.00	1.00	0.85	1.00	1.00	0.85	1.00	1.00	0.85	1.00	1.00	0.85
Flt Protected	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00
Satd. Flow (prot)	1770	1863	1583	1770	1863	1583	1770	1863	1583	1770	1863	1583
Flt Permitted	0.38	1.00	1.00	0.26	1.00	1.00	0.63	1.00	1.00	0.55	1.00	1.00
Satd. Flow (perm)	712	1863	1583	478	1863	1583	1178	1863	1583	1029	1863	1583
Peak-hour factor, PHF	0.87	0.87	0.87	0.88	0.88	0.88	0.84	0.84	0.84	0.88	0.88	0.88
Adj, Flow (vph)	57	330	37	190	434	33	55	79	151	201	200	130
RTOR Reduction (vph)	0	0	28	0	0	22	0	0	114	0	0	87
Lane Group Flow (vph)	57	330	9	190	434	11	55	79	37	201	200	43
Turn Type	pm+pt		Perm	pm+pt		Perm	pm+pt		Perm	pm+pt		Perm
Protected Phases	7	4		3	8		5	2		1	6	
Permitted Phases	4		4	8		8	2		2	6		6
Actuated Green, G (s)	24.9	21.8	21.8	38.4	29.3	29.3	24.7	21.6	21.6	38.6	29.5	29.5
Effective Green, g (s)	24.9	21.8	21.8	38.4	29.3	29.3	24.7	21.6	21.6	38.6	29.5	29.5
Actuated g/C Ratio	0.28	0.24	0.24	0.43	0.33	0.33	0.28	0.24	0.24	0.43	0.33	0.33
Clearance Time (s)	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
Lane Grp Cap (vph)	236	456	388	360	613	521	348	452	384	538	618	525
v/s Ratio Prot	0.01	0.18		c0.06	c0.23		0.01	0.04		c0.05	0.11	
v/s Ratio Perm	0.06		0.01	0.16		0.01	0.04		0.02	c0.12		0.03
v/c Ratio	0.24	0.72	0.02	0.53	0.71	0.02	0.16	0.17	0.10	0.37	0.32	0.08
Uniform Delay, d1	24.0	30.8	25.5	17.7	26.1	20.2	24.0	26.7	26.1	16.3	22.3	20.4
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Incremental Delay, d2	0.5	5.6	0.0	1.4	3.7	0.0	0.2	0.8	0.5	0.4	1.4	0.3
Delay (s)	24,6	36.5	25.5	19,1	29.8	20.2	24.2	27.5	26.6	16.8	23,7	20.8
Level of Service	С	D	С	В	С	C	С	С	С	В	С	С
Approach Delay (s)		33.9	10 NULLEONS		26.2			26.4			20.3	
Approach LOS		С			С			С			С	
Intersection Summary					-							
HCM Average Control Dela	y	26.3			CM Leve	l of Servi	ce		C			
HUM Volume to Capacity ra	atio	io 0.54			r :				40.0			
Actuated Cycle Length (s)			89.0	SI Sisteration (S	um of los	t time (s)	<u>alagoganoa ka</u>	ougo or cinid	18.0			
Intersection Capacity Utiliza	auon		57.6%	in the second	U Level	or Service	9 38.001150.00		В	MCCONTRACTOR	nation so hade	
Analysis Period (min)			15				IN REPORTS			201010305202		
c Critical Lane Group												

	۶	-	\rightarrow	4	4	×	•	Ť	1	1	ţ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	4	7	ሻ	۸	7	ሻ	* *	۲	ሻ	ትተ	٦
Volume (vph)	10	8 <u>0</u>	18	375	127	39	9	177	322	102	368	39
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.95	1.00	1.00	0.95	1.00
	1.00	1.00	0.85	1.00	1.00	0.85	1.00	1.00	0.85	1,00	1.00	0,85
Flt Protected	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00
Satd. Flow (prot)	1770	1863	1583	1770	1863	1583	1770	3539	1583	1770	3539	1583
Flt Permitted	0.67	1.00	1.00	0.46	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00
Satd. Flow (perm)	1244	1863	1583	854	1863	1583	1770	3539	1583	1770	3539	1583
Peak-hour factor, PHF	0.79	0.79	0.79	0.91	0.91	0.91	0.81	0.81	0.81	0.92	0.92	0.92
Adj. Flow (vph)	13	101	23	412	140	43	11 -	219	398	111	400	42
RTOR Reduction (vph)	0	0	20	0	0	29	0	. 0	268	0	0	25
Lane Group Flow (vph)	13	101	- 3	412	140	14	11	219	130	111	400	17
Turn Type	pm+pt		Perm	pm+pt		Perm	Prot		Perm	Prot		Perm
Protected Phases	7	4		3	8		5	2		1	6	
Permitted Phases	4		4	8		8			2			6
Actuated Green, G (s)	12.5	11.8	11.8	37.7	31.0	31.0	0.7	30.8	30.8	8.1	38.2	38.2
Effective Green, g (s)	12.5	11.8	11.8	37.7	31.0	31.0	0.7	30.8	30.8	8.1	38.2	38.2
Actuated g/C Ratio	0.13	0.12	0.12	0.40	0.33	0,33	0.01	0.33	0.33	0.09	0.40	0,40
Clearance Time (s)	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3,0	3.0	3.0	3.0	3.0	3.0	3.0
Lane Grp Cap (vph)	168	232	197	533	610	519	13	1152	515	152	1429	639
v/s Ratio Prot	0.00	0.05		c0.16	0.08	denni dir iri	0.01	0.06		c0.06	c0.11	
v/s Ratio Perm	0.01		0.00	c0.15		0.01			0.08			0.01
v/c Ratio	0.08	0.44	0.01	0.77	0.23	0.03	0.85	0.19	0.25	0.73	0.28	0.03
Uniform Delay, d1	35.9	38.3	36.3	22.6	23.1	21.6	46.9	22.9	23.4	42.2	19.0	17.0
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Incremental Delay, d2	0.2	1.3	0.0	6.9	0.2	0.0	166.4	0.4	1.2	16.4	0.5	0.1
Delay (s)	36.1	39.6		29.5	23.3	21,6	213.3	23.3	24.6	58.6	19,4	17.1
Level of Service	D	D	D	С	С	C	F	С	С	E	В	В
Approach Delay (s)		38.7			27.4			27.5			27.1	
Approach LOS		D			С			C			С	
Intersection Summary												
HCM Average Control Delay	•		28.2	H	CM Level	l of Servic	e		С			
HCM Volume to Capacity rai	lio		0.52							ogiotignique		
Actuated Cycle Length (s)			94.6	Si	um of losi	t time (s)	(0) 00 (0 M) (0 M) (0 M) (0 M) (0 M)	norm or or the	12.0		orineutor moneri	tumpercessentro
Intersection Capacity Utilizat	ion		55.9%	IC	U Level o	of Service)		B			
Analysis Period (min)			15									
c Critical Lane Group												

	٦	+	\sim	4	-	×.	•	t	1	1	ţ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR.	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	•	7	٦	1	ſ	٦	1	ſ	ሻ	1	7
Volume (vph)	152	443	55	154	423	253	102	333	223	87	133	14
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	6.0	6.0	6.0	6.0	6,0	6.0	6.0	6.0	6.0	6.0	6.0	6.0
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Fillesseries	1.00	1.00	0.85	1,00	1,00	0.85	1.00	1.00	0.85	1.00	1.00	0.85
Fit Protected	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00
Satd. Flow (prot)	1770	1863	1583	1770	1863	1583	1770	1863	1583	1770	1863	1583
Flt Permitted	0.15	1.00	1.00	0.17	1.00	1.00	0.57	1.00	1.00	0.33	1.00	1.00
Satd. Flow (perm)	279	1863	1583	313	1863	1583	1060	1863	1583	620	1863	1583
Peak-hour factor, PHF	0.92	0.92	0.92	0.85	0.85	0.85	0.80	0.80	0.80	0.72	0.72	0.72
Adj. Flow (vph)	165	482	60	181	498	298	128	416	279	121	185	19
RTOR Reduction (vph)	0	0	36	0	0	173	0	0	175	0	0	13
Lane Group Flow (vph)	165	482	24	181	498	125	128	416	104	121	185	6
Turn Type	pm+pt		Perm	pm+pt		Perm	pm+pt		Perm	pm+pt		Perm
Protected Phases	7	4		3	8		. 5	2	file and the second	1	6	
Permitted Phases	4		4	8	19.954/99/99/1996/1996/1996/1996/1996/1996/19	8	2		2	6		6
Actuated Green, G (s)	44.1	34,4	34,4	44.3	34.5	34.5	46.2	40.2	40.2	42.2	38.2	38.2
Effective Green, g (s)	44.1	34.4	34.4	44.3	34.5	34.5	46.2	40.2	40.2	42.2	38.2	38.2
Actuated g/C Ratio	0.39	0.31	0.31	0.39	0.31	0.31	0.41	0.36	0.36	0.38	0.34	0.34
Clearance Time (s)	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
Lane Grp Cap (vph)	238	570	484	250	572	486	474	666	566	274	633	538
v/s Ratio Prot	0.06	0.26		c0.06	c0.27		0.01	c0.22		c0.02	0,10	en ng naveni Childheilight
v/s Ratio Perm	0.21		0.02	0.22		0.08	0.10		0.07	0.15		0.00
v/c Ratio	0.69	0.85	0.05	0.72	0.87	0.26	0.27	0.62	0.18	0.44	0.29	0.01
Uniform Delay, d1	25.9	36.5	27.5	25.8	36.8	29.3	21.1	29.9	24.8	26.7	27.2	24.6
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1,00	1.00	1.00	1.00	1.00
Incremental Delay, d2	8.4	11.1	0.0	9.9	13.6	0.3	0.3	4,4	0.7	1.1	1.2	0.0
Delay (s)	34,4	47.6	27.5	35.8	50.4	29.6	21.4	34.2	25.5	27.9	28.4	24.6
Level of Service	С	D	С	D	D	С	С	С	С	С	С	С
Approach Delay (s)		42.8			41.4			29.3			28.0	
Approach LOS		D			D			С			С	
Intersection Summary												
HCM Average Control Delay			36.7	H	CM Leve	l of Servic	ce		D			
HCM Volume to Capacity rat	io		0.64									
Actuated Cycle Length (s)			112.4	Su	um of los	t time (s)			12.0			
Intersection Capacity Utilizati	ion		74.2%	IC	U Level	of Service			D			
Analysis Period (min)			15									
c Critical Lane Group			serere in the Side of Side (Side).									

	<u>بر</u> ۲	+	\mathbf{i}	4	-	*	1	†	1	\$	ţ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT .	SBR
Lane Configurations	ሻ	†	đ	ሻ	1	1	ሻ	<u>^</u>	Ť	٦		7
Volume (vph)	92	264	46	303	157	114	25	408	381	80	170	- 24
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.95	1.00	1.00	0.95	1.00
Fit works and the second of	1.00	1.00	0.85	1,00	1.00	0.85	1.00	1.00	0.85	1.00	1.00	0.85
Fit Protected	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00
Satd. Flow (prot)	1770	1863	1583	1770	1863	1583	-1770	3539	1583	1770	3539	1583
Flt Permitted	0.65	1.00	1.00	0.18	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00
Satd. Flow (perm)	1214	1863	1583	330	1863	1583	1770	3539	1583	1770	3539	1583
Peak-hour factor, PHF	0.71	0.71	0.71	0.94	0.94	0.94	0.90	0.90	0.90	0.91	0.91	0.91
Adj. Flow (vph)	130	372	65	322	167	121	28	453	423	88	187	26
RTOR Reduction (vph)	0	0	39	0	0	79	0	0	298	0	0	17
Lane Group Flow (vph)	130	372	26	322	167	42	28	453	125	88	187	9
Turn Type	pm+pt		Perm	pm+pt		Perm	Prot		Perm	Prot		Perm
Protected Phases	7	4		· 3	8		5	2			6	
Permitted Phases	4		4	8		8			2			6
Actuated Green, G (s)	31.5	25.3	25.3	48.9	36.7	36.7	3.3	31.4	31.4	7.8	35.9	35,9
Effective Green, g (s)	31.5	25.3	25.3	48.9	36.7	36.7	3.3	31.4	31.4	7.8	35.9	35.9
Actuated g/C Ratio	0.30	0,24	0.24	0.46	0.35	0.35	0.03	0.30	0.30	0.07	0.34	0.34
Clearance Time (s)	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3,0	3.0	3.0	3.0	3.0
Lane Grp Cap (vph)	393	444	377	391	644	548	55	1047	468	130	1197	536
v/s Ratio Prot	0.02	0.20		c0.14	0.09	t at staan stalid Stalid Het staan de stalid Stalid stalid stalid	0.02	c0.13		c0.05	c0.05	
v/s Ratio Perm	0.08		0.02	c0.24		0.03			0.08			0.01
v/c Ratio	0.33	0.84	0.07	0.82	0.26	0.08	0.51	0.43	0.27	0.68	0,16	0.02
Uniform Delay, d1	28.3	38.4	31.3	21.9	24.9	23.3	50.6	30.2	28.6	47.9	24.5	23.4
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00	1,00	1.00	1.00	1.00	1.00	1.00
Incremental Delay, d2	0.5	13.0	0.1	13.1	0.2	0.1	7.2	1.3	1.4	13.1	0.3	0.1
Delay (s)	28.8	51.4	31.4	35.0	25.1	23,4	57,8	31.5	30.0	61.0	24.8	23.4
Level of Service	С	D	С	D	С	С	Ε	С	С	E	C	С
Approach Delay (s)		43.9		ter a tanan a	30.0			31.6	64mmin/en		35.3	
Approach LOS		D			С			С			D	
Intersection Summary												
HCM Average Control Dela	y		34.6	Н	CM Leve	of Servic	е		С			
HCM Volume to Capacity ra	atio		0.69									
Actuated Cycle Length (s)			106.1	S	um of los	t time (s)			24.0			e som skille å sond "***
Intersection Capacity Utiliza	ation	sjoor or be	66.4%	lC	CU Level	of Service			C			
Analysis Period (min)			15									2100-002
c Critical Lane Group												

Capacity Analyses – 2014 No-Build Conditions

 γ_{ij}

	۶	→	\mathbf{F}	4	-	*	5	` ↑	1	1	ţ	~
Movement	EBL	EBT.	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	1	7	٢	†	Ţ	٦	1	۴	ሻ	1	t
Volume (vph)	60	343	38	199	456	35	55	79	152	211	210	136
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6,0	6.0	6.0	6.0	6,0
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Fit manage in the second second	1.00	1.00	0.85	1.00	1.00	0.85	1,00	1,00	0.85	1.00	1.00	0.85
Fit Protected	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00
Satd. Flow (prot)	1770	1863	1583	1770	1863	1583	1770	1863	1583	1770	1863	1583
Flt Permitted	0.27	1.00	1.00	0.21	1.00	1.00	0.61	1.00	1.00	0.54	1.00	1.00
Satd. Flow (perm)	503	1863	1583	393	1863	1583	1136	1863	1583	997	1863	1583
Peak-hour factor, PHF	0.87	0.87	0.87	0.88	0.88	0.88	0.84	0.84	0.84	0.88	0.88	0.88
Adj. Flow (vph)	69	394	44	226	518	40	65	94	181	240	239	155
RTOR Reduction (vph)	0	0	32	0	0	26	0	0	142	0	0	108
Lane Group Flow (vph)	69	394	- 12	226	518	. 14	65	94	39	240	239	47
Turn Type	pm+pt		Perm	pm+pt		Perm	pm+pt		Perm	pm+pt		Perm
Protected Phases	7	4		3	8		5	2		1	6	
Permitted Phases	4		4	8		8	2		2	6		6
Actuated Green, G (s)	28.9	25.1	25.1	42.2	32.4	32,4	23.8	20.0	20.0	37.7	27.9	27.9
Effective Green, g (s)	28.9	25.1	25.1	42.2	32.4	32.4	23.8	20.0	20.0	37.7	27.9	27.9
Actuated g/C Ratio	0.31	0,27	0.27	0.46	0.35	0.35	0.26	0.22	0.22	0.41	0.30	0.30
Clearance Time (s)	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3,0	3.0	3.0	3.0
Lane Grp Cap (vph)	211	509	432	347	657	558	320	405	345	507	566	481
v/s Ratio Prot	0.01	0.21		c0.08	c0.28		0.01	0.05		c0.06	0.13	
v/s Ratio Perm	0.09		0.01	0.22		0.01	0.04		0.02	c0.13		0.03
v/c Ratio	0.33	0.77	0.03	0.65	0.79	0.03	0,20	0.23	0,11	0.47	0.42	0.10
Uniform Delay, d1	23.2	30.8	24.5	17,9	26.7	19.4	26.2	29.6	28.8	18.7	25.6	23.0
Progression Factor	1.00	1,00	1.00	1,00	1.00	1.00	1,00	1.00	1.00	1.00	1.00	1.00
Incremental Delay, d2	0.9	7.2	0.0	4.3	6.2	0.0	0.3	1.3	0.7	0.7	2.3	0.4
Delay (s)	24.1	38.0	24.5	22.2	32.9	19.5	26.5	31.0	29.5	19.4	27.9	23.4
Level of Service	С	D	С	С	С	B	С	С	С	В	С	С
Approach Delay (s)		34.9			29,1	8000201627-91		29.3			23.6	
Approach LOS		С			С			С			С	
Intersection Summary												
HCM Average Control Delay	/		28.9	H	CM Leve	l of Servi	ce		С			
HCM Volume to Capacity ra	tio	0.64										
Actuated Cycle Length (s)			91.9	S	um of los	t time (s)			18.0		A 188 million	the state of the s
Intersection Capacity Utilization 64.9%				IC	CU Level	of Service	9		C			
Analysis Period (min)			15									

c Critical Lane Group

	٦		\rightarrow	<	-	*	1	1	1	1	¥	1
Movement	EBL	EBT:	EBR	WBL	WBT	WBR	NBL	NBT-	NBR	SBL	SBT	SBR
Lane Configurations	ኘ	↑	7	ሻ		7	٦	竹	۲	ሻ	*†	7
Volume (vph)	12	96	21	448	152	47	11	211	384	122	439	47
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	6,0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.95	1.00	1.00	0.95	1.00
	1.00	1.00	0.85	1.00	1.00	0.85	1.00	1.00	0.85	1,00	1.00	0.85
Flt Protected	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00
Satd. Flow (prot)	1770	1863	1583	1770	1863	1583	1770	3539	1583	1770	3539	1583
Flt Permitted	0.65	1.00	1.00	0.48	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00
Satd. Flow (perm)	1214	1863	1583	890	1863	1583	1770	3539	1583	1770	3539	1583
Peak-hour factor, PHF	0.79	0.79	0.79	0.91	0.91	0.91	0.81	0.81	0.81	0.92	0.92	0.92
Adj. Flow (vph)	15	122	27	492	167	52	14	260	474	133	477	51
RTOR Reduction (vph)	0	0	23	0	0	34	0	0	338	0	0	31
Lane Group Flow (vph)	15	122	4	492	167	18	14	260	136	133	477	20
Turn Type	pm+pt		Perm	pm+pt		Perm	Prot		Perm	Prot		Perm
Protected Phases	7	4		3	8		5	2		1	6	
Permitted Phases	4		4	8		8			2			6
Actuated Green, G (s)	16.6	15.1	15.1	43.4	35.9	35.9	0.7	29.0	29.0	10.7	39.0	39,0
Effective Green, g (s)	16.6	15.1	15.1	43.4	35.9	35.9	0.7	29.0	29.0	10.7	39.0	39.0
Actuated g/C Ratio	0.16	0.15	0.15	0,43	0.36	0.36	0.01	0.29	0.29	0,11	0.39	0.39
Clearance Time (s)	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0
Vehicle Extension (s)	3.0	3,0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
Lane Grp Cap (vph)	208	278	236	576	662	562	12	1015	454	187	1365	611
v/s Ratio Prot	0.00	0.07		c0.19	0.09		0.01	0.07		c0.08	c0.13	
v/s Ratio Perm	0.01		0.00	c0.18		0.01			0.09	••••••••••••••••••••••••••••••••••••••		0.01
v/c Ratio	0.07	0.44	0.02	0.85	0.25	0.03	1.17	0.26	0.30	0.71	0.35	0.03
Uniform Delay, d1	35.6	39.1	36.7	23.1	23.1	21.3	50.2	27.7	28.1	43.7	22.0	19.3
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Incremental Delay, d2	0.1	1.1	0.0	11.8	0.2	0.0	320.6	0.6	1.7	12.0	0.7	0.1
Delay (s)	35.8	40.3	36.7	34.9	23.3	21.3	370.8	28.4	29.8	55./	22.8	19.4
Level of Service	D	D	D	С	C	C	F	C	C	E	C	В
Approach Delay (s)		39.3			31.2			35.7			29,1	
Approach LOS		Ð			C			D			C	
Intersection Summary												
HCM Average Control Delay	ſ		32.6	Н	CM Leve	l of Servic	e		С			
HCM Volume to Capacity ra	tio		0.61							villing) and		
Actuated Cycle Length (s)	فمانتهاتهم ومراجع ومروان		101.1	S	um of los	t time (s)	N (3) 07 / 763 / 3 / 3 / 77 / 77 / 77	ana generativa e e	12.0		national and a second	
Intersection Capacity Utiliza	tion		62.0%	10 second 10	CU Level	of Service)		B			
Analysis Period (min)			15		94						(*))))))))))))))))))))))))))))))))))))	a and a second
c Critical Lane Group						san aan ar an ar an Ar an ar a						

	≯		\mathbf{i}	€		*	1	1	1	1	ŧ	-
Movement	EBL.	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	•	7	ኘ	ł	7	٦	1	7	٦	1	7
Volume (vph)	181	529	66	184	505	302	122	398	266	104	159	17
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	6.0	6.0	6.0	6.0	6.0	6.0	6,0	6.0	6.0	6.0	6.0	6.0
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Enternal and the experiments of	1.00	1.00	0.85	1.00	1.00	0.85	1.00	1.00	0.85	1.00	1.00	0.85
Fit Protected	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00
Satd. Flow (prot)	1770	1863	1583	1770	1863	1583	1770	1863	1583	1770	1863	1583
Flt Permitted	0.10	1.00	1.00	0.10	1.00	1.00	0.49	1.00	1.00	0.20	1.00	1.00
Satd. Flow (perm)	193	1863	1583	184	1863	1583	909	1863	1583	371	1863	1583
Peak-hour factor, PHF	0.92	0.92	0.92	0.85	0.85	0.85	0.80	0.80	0.80	0.72	0.72	0.72
Adj. Flow (vph)	197	575	72	216	594	355	152	498	332	144	221	24
RTOR Reduction (vph)	0	0	34	0	0	153	0	0	178	0	0	17
Lane Group Flow (vph)	197	575	38	216	594	202	152	498	154	144	221	7
Turn Type	pm+pt		Perm	pm+pt		Perm	pm+pt		Perm	pm+pt		Perm
Protected Phases	7	4		3	8		5	2		1	6	
Permitted Phases	4		4	8		8	2		2	6		6
Actuated Green, G (s)	47.6	38.6	38.6	51.6	40.6	40.6	46.9	39.0	39.0	41,1	36.1	36,1
Effective Green, g (s)	47.6	38.6	38.6	51.6	40.6	40.6	46.9	39.0	39.0	41.1	36.1	36.1
Actuated g/C Ratio	0.40	0.33	0.33	0.44	0.35	0.35	0.40	0.33	0.33	0.35	0.31	0.31
Clearance Time (s)	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3,0	3.0	3.0
Lane Grp Cap (vph)	199	611	520	229	643	547	420	618	525	189	572	486
v/s Ratio Prot	0.08	0.31		c0.09	0.32		0.02	c0.27		c0.03	0,12	
v/s Ratio Perm	0.33		0.02	c0.33		0.13	0.12		0.10	0.23		0.00
v/c Rafio	0.99	0,94	0.07	0.94	0.92	0.37	0.36	0.81	0.29	0.76	0.39	0.02
Uniform Delay, d1	28.9	38.4	27.2	30.9	37.0	28.9	23.6	35.8	29.1	33.8	32.0	28.4
Progression Factor	1.00	1.00	1.00	1.00	1,00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Incremental Delay, d2	60.2	22.8	0.1	43.6	19.0	0.4	0.5	10.8	1.4	16.5	2.0	0.1
Delay (s)	89.1	61.2	27,2	74.5	56.0	29.3	24.1	46.6	30.5	50.3	34.0	28.4
Level of Service	F	Е	С	E	E	С	С	D	С	D	С	C
Approach Delay (s)		64.9			51.3			34.7			39.7	
Approach LOS		E			D			D			D	
Intersection Summary												
HCM Average Control Dela	у		49.4	Н	ICM Leve	l of Servi	се		D			
HCM Volume to Capacity ra	atio		0.84									
Actuated Cycle Length (s)			117.6	S	um of los	t time (s)		Wes day 1	18.0	ere rease but south to out a rea		
Intersection Capacity Utiliza	ation		84.7%	10	CU Level	of Servic	θ.		E E		n an an 120 Interstation	
Analysis Period (min)			15									
c Critical Lane Group												

\$	۶	→	\rightarrow	✓	-	•	1	Ť	1	1	ŧ	-
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	•	7	۲	ł	7	٦	ተተ	7	ሻ	ተተ	7
Volume (vph)	110	315	55	362	187	136	30	487	455	96	203	29
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	6.0	6.0	6.0	6.0	6,0	6.0	6.0	6.0	6.0	6.0	6.0	6.0
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.95	1.00	1.00	0.95	1.00
Fit	1.00	1.00	0.85	1.00	1.00	0.85	1.00	1.00	0.85	1.00	1.00	0.85
Flt Protected	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00
Satd. Flow (prot)	1770	1863	1583	1770	1863	1583	1770	3539	1583	1770	3539	1583
Flt Permitted	0.63	1.00	1.00	0.11	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00
Satd, Flow (perm)	1179	1863	1583	207	1863	1583	1770	3539	1583	1770	3539	1583
Peak-hour factor, PHF	0.71	0.71	0.71	0.94	0.94	0.94	0.90	0.90	0.90	0.91	0.91	0.91
Adj. Flow (vph)	155	444	77	385	199	145	33	541	506	105	223	32
RTOR Reduction (vph)	0	0	38	0	0	87	0	0	325	0	0	22
Lane Group Flow (vph)	155	444	39	385	199	58	33	541	181	105	223	10
Turn Type	pm+pt		Perm	pm+pt		Perm	Prot		Perm	Prot		Perm
Protected Phases	7	4		3	8		5	2		1	6	
Permitted Phases	4		4	8		8			2			6
Actuated Green, G (s)	36.5	30.5	30.5	59.2	47.2	47.2	3.5	30.8	30.8	9.5	36.8	36,8
Effective Green, g (s)	36.5	30.5	30.5	59.2	47.2	47.2	3.5	30.8	30.8	9.5	36.8	36.8
Actuated g/C Ratio	0.31	0.26	0,26	0.50	0.40	0.40	0.03	0.26	0.26	0.08	0.31	0.31
Clearance Time (s)	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
Lane Grp Cap (vph)	396	484	411	406	748	636	53	928	415	143	1108	496
v/s Ratio Prot	0.02	0,24	NURAPARA	c0,18	0,11		0,02	c0,15		c0.06	c0.06	
v/s Ratio Perm	0.10		0.02	c0.29		0.04			0.11			0.01
Wc Ratio	0.39	0.92	0.10	0.95	0.27	0.09	0.62	0.58	0.44	0.73	0.20	0.02
Uniform Delay, d1	30.7	42.3	33.0	34.5	23.5	21.8	56.3	37.8	36.1	52.8	29.6	27.9
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Incremental Delay, d2	U.5	ZZ.1	U.1	31.3	0.2	U.1	20.6	Z.1 10.1	3.3 00 4	17.5 70.4	U.4	U.1
Delay (s)	3.3	64.4 L	33. I	00.9 F	23./	21.9	/0.9 F	40.4	09.4 D	/0.4	30.0	28.0
Level of Service		E E2 O	U	C			E	U 44 4	U	C Least of the second	11 0	
Approach LOS		00,0 D			40.0 D			41.1 D	organization of the state of the		41.0 D	
Approach LOS		U			U			U			ע	
Intersection Summary												
HCM Average Control Dela	у		45.2	Η	CM Level	l of Servic	жe		D			
HCM Volume to Capacity ra	atio :		0.82				A sea fa bi birdi dana an Sata ka sa					
Actuated Cycle Length (s)			117.5	Si	um of losi	t time (s)			24.0	TANEN AND ADDRESS	such the shift of the serve	stockeloter
Intersection Capacity Utiliza	ation	encencia de	75.4%	IC	SU Level o	of Service		Quality in the	D			
Analysis Period (min)			15			••••••••••••••••••••••••••••••••						SCHENER CONTRACTOR
c Critical Lane Group	en and states for build	an a		na na naistraith (1997) Calaistraithe (1997)	xoasy our offe		20121111251251251					

Capacity Analyses – 2014 Build Conditions

	۶	-	\mathbf{i}	∢	-	×	*	t	۴	\	°∎ ↓	1
Movement	EBL	EBT	EBR	WBL.	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	↑	7	ሻ	↑	۴	ሻ	†	۲	٦	t	7
Volume (vph)	60	373	51	199	490	35	70	79	152	211	210	136
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	6,0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Fd	1.00	1.00	0.85	1.00	1.00	0.85	1.00	1,00	0.85	1.00	1,00	0,85
Fit Protected	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00
Satd. Flow (prot)	1770	1863	1583	1770	1863	1583	1770	1863	1583	1770	1863	1583
Flt Permitted	0.24	1.00	1.00	0.19	1.00	1.00	0.61	1.00	1.00	0.53	1.00	1.00
Satd. Flow (perm)	446	1863	1583	363	1863	1583	1136	1863	1583	982	1863	1583
Peak-hour factor, PHF	0.87	0.87	0.87	0.88	0.88	0.88	0.84	0.84	0.84	0.88	0.88	0.88
Adj. Flow (vph)	69	429	59	226	557	40	83	94	181	240	239	155
RTOR Reduction (vph)	0	0	42	0	0	25	0	0	144	0	0	112
Lane Group Flow (vph)	69	429	17	226	557	15	83	94	37	240	239	43
Turn Type	pm+pt		Perm	pm+pt		Perm	pm+pt		Perm	pm+pt	and a set of the set of	Perm
Protected Phases	7	4		3	8		5	2		1	6	
Permitted Phases	4		4	8		8	2		2	6		6
Actuated Green, G (s)	30.7	26.8	26.8	43.9	34.0	34.0	23.3	18.7	18,7	35.9	25.3	25.3
Effective Green, g (s)	30.7	26.8	26.8	43.9	34.0	34.0	23.3	18.7	18.7	35.9	25.3	25.3
Actuated g/C Ratio	0.33	0.29	0.29	0.48	0.37	0.37	0.25	0.20	0.20	0.39	0.28	0.28
Clearance Time (s)	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
Lane Grp Cap (vph)	205	544	462	344	690	586	320	380	322	480	513	436
v/s Ratio Prot	0,01	0.23		c0.08	c0.30		0.01	0.05		c0.06	0.13	
v/s Ratio Perm	0.10		0.01	0.24		0.01	0.05		0.02	c0.13		0.03
v/c Ratio	0.34	0.79	0.04	0.66	0.81	0.03	0.26	0.25	0.11	0.50	0.47	0.10
Uniform Delay, d1	22.1	29.9	23.3	17.3	26.0	18.4	26.8	30.6	29.8	19.9	27.6	24.8
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Incremental Delay, d2	1.0	7.5	0.0	4.5	6.9	0.0	0.4	1.5	0.7	0.8	3.0	0.4
Delay (s)	23.1	37.4	23.3	21.8	32.8	18.4	27.2	32.2	30.5	20.8	30.7	25.2
Level of Service	С	D	С	С	С	В	С	С	С	С	C	C
Approach Delay (s)		34.1			29.1			30.2			25.6	
Approach LOS		С			С			С			С	
Intersection Summary												
HCM Average Control Dela	ау		29.5	Η	CM Leve	l of Servi	ce		С			000.00151555200.0015500 2010.001500
HGM Volume to Capacity r	atio		0.67						40.0			
Actuated Cycle Length (s)			91.8	S	um of los	t time (s)	91101101100		18.0			
Intersection Capacity Utiliz	ation		66,5%		U Level	of Servici	elenenen	annast fallosist	U			
Analysis Period (min)		un de la compañsión de la	15			navati metters	chica nationation		an an air an		NAMES OF COMPANY	
c Critical Lane Group												

HCM Signalized Intersection Capacity Analysis 2: SR 347 (Friendship Road) & McEver Road

and An an the second s	۶	→	\mathbf{F}	4	-	*	1	Ť	1	1	ţ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ኘ	↑	ř	ሻ	1	7	ሻ	††	Ť	ኘ	††	7
Volume (vph)	- 17	139	42	448	201	47	35	211	384	122	439	52
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.95	1.00	1.00	0.95	1.00
Fit	1.00	1.00	0.85	1.00	1.00	0,85	1.00	1.00	0.85	1.00	1.00	0.85
Fit Protected	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00
Satd. Flow (prot)	1770	1863	1583	1770	1863	1583	1770	3539	1583	1770	3539	1583
Fit Permitted	0.62	1.00	1.00	0.39	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00
Satd, Flow (perm)	1155	1863	1583	725	1863	1583	1770	3539	1583	1770	3539	1583
Peak-hour factor, PHF	0.79	0.79	0.79	0.91	0.91	0.91	0.81	0.81	0.81	0.92	0.92	0.92
Adj. Flow (vph)	22	176	53	492	221	52	43	260	474	133	477	57
RTOR Reduction (vph)	0	0	44	0	0	32	0	0	349	0	0	38
Lane Group Flow (vph)	22	176	- 9	492	221	20	43	260	125	133	477	19
Turn Type	pm+pt		Perm	pm+pt		Perm	Prot		Perm	Prot		Perm
Protected Phases	. 7	4		3	8		5	2		1	6	
Permitted Phases	4		4	8		8			2			6
Actuated Green, G (s)	18.5	17.0	17.0	46.4	38.9	38.9	3.4	26.7	26.7	10.3	33.6	33.6
Effective Green, g (s)	18.5	17.0	17.0	46.4	38.9	38.9	3.4	26.7	26.7	10.3	33.6	33.6
Actuated g/C Ratio	0.18	0.17	0.17	0.46	0.38	0.38	0.03	0.26	0.26	0.10	0.33	0.33
Clearance Time (s)	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
Lane Grp Cap (vph)	220	312	265	573	715	607	59	932	417	180	1173	525
v/s Ratio Prot	0.00	0.09		c0.20	0.12		0.02	0.07		c0.08	c0.13	
v/s Ratio Perm	0.02		0.01	c0.19		0.01			0.08			0.01
v/c Ratio	0.10	0.56	0.03	0.86	0.31	0.03	0.73	0.28	0.30	0.74	0.41	0.04
Uniform Delay, d1	34.3	38.8	35.3	21.4	21.9	19.5	48.5	29.7	29.9	44.2	26.2	22.9
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Incremental Delay, d2	0.2	2.3	0.1	12.2	0.2	0.0	36.0	0.7	1.8	14.6	1.0	0.1
Delay (s)	34.5	41.1	35.4	33.5	22.1	19.5	84.5	30.4	31.7	58.9	27,2	23.1
Level of Service	С	D	D	С	С	В	F	С	С	E	С	С
Approach Delay (s)		39.3	wanter oor oo o		29.3			34.2			33.2	
Approach LOS		D			С			С			С	
Intersection Summary												
HCM Average Control Dela	у		32.9	Н	CM Leve	l of Servic	e		С			
HCM Volume to Capacity ra	atio		0.64									
Actuated Cycle Length (s)			101.4	S	um of los	t time (s)			12.0			
Intersection Capacity Utiliza	ation		67.6%	IC	U Level	of Service			C			
Analysis Period (min)			15									
c Critical Lane Group							uju su ni ni					

Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	ት	†	.	7	٦	r.
Volume (veh/h)	25	129	209	84	79	23
Sign Control		Free	Free		Stop	
Grade		0%	0%	0.07	0%	0.00
Peak Hour Factor	0.87	0.87	0.87	0.87	0.83	U.83
Hourly flow rate (vph)	-29	148	240	91	90	20
Pedestrians						
Lane Width (II)		100000000000000000000000000000000000000				
Walking Speed (105)						
Pight turn flore (yeb)						
Median type		None	None			
Median storage veh)						
Unstream signal (ff)						
pX. platoon unblocked			1.5100100101010101010100			2779-92879798888888888888888888888888888
vC. conflicting volume	337				446	240
vC1, stage 1 conf vol						
vC2, stage 2 conf vol						
vCu, unblocked vol	337				446	240
tC, single (s)	4,1				6.4	6.2
tC, 2 stage (s)				er ten her her Lidd Ligt (digted		
tF (s)	2.2				3.5	3,3
p0 queue free %	98				83	97
cM capacity (veh/h)	1222				557	799
Direction, Lane #	EB 1	EB 2	WB 1	WB 2	SB 1	SB 2
Volume Total	29	148	240	97	95	28
Volume Left	29	0	0	0	95	0
Volume Right	0	0	0	97	0	28
cSH	1222	1700	1700	1700	557	799
Volume to Capacity	0,02	0.09	0.14	0.06	0.17	0.03
Queue Length 95th (ft)	2	0	0	0	15	3
Control Delay (s)	8.0	0.0	0.0	0.0	12.8	9,7
Lane LOS	A				В	A
Approach Delay (s)	1.3		0,0		12.1	
Approach LOS					В	
Intersection Summary						
Average Delay			2.7			
Intersection Capacity Utiliz	ation		28.7%	1C	U Level o	of Service
Analysis Period (min)			15			

	<u>بر:</u>		\mathbf{i}	∢	+	₹	*	1	1	\	Ļ	-
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	Ť	7	ሻ	1	۴	ሻ	1	7	ሻ	ł	7
Volume (vph)	181	581	88	184	560	302	145	398	266	104	159	17
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	6,0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6,0	6.0	6.0	6.0
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
	1.00	1.00	0.85	1.00	1.00	0,85	1.00	1.00	0.85	1.00	1.00	0.85
Fit Protected	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00
Satd. Flow (prot)	1770	1863	1583	1770	1863	1583	1770	1863	1583	1770	1863	1583
Flt Permitted	0.09	1.00	1.00	0.09	1.00	1.00	0.42	1.00	1.00	0.16	1.00	1.00
Satd. Flow (perm)	174	1863	1583	170	1863	1583	782	1863	1583	302	1863	1583
Peak-hour factor, PHF	0.92	0.92	0.92	0.85	0.85	0.85	0.80	0.80	0.80	0.72	0.72	0.72
Adj. Flow (vph)	197	632	96	216	659	355	181	498	332	144	221	24
RTOR Reduction (vph)	0	0	42	0	0	147	0	0	179	0	0	18
Lane Group Flow (vph)	197	632	54	216	659	208	181	498	153	144	221	6
Turn Type	pm+pt		Perm	pm+pt		Perm	pm+pt		Perm	pm+pt		Perm
Protected Phases	7	4		3	8		5	2			6	
Permitted Phases	4		4	8		8	2		2	6		6
Actuated Green, G (s)	51.8	42.8	42.8	53.8	43.8	43.8	47.3	36.0	36.0	36.7	30.7	30.7
Effective Green, g (s)	51.8	42.8	42.8	53.8	43.8	43.8	47.3	36.0	36.0	36.7	30.7	30.7
Actuated g/C Ratio	0.44	0.36	0.36	0.45	0.37	0.37	0.40	0.30	0.30	0.31	0.26	0.26
Clearance Time (s)	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3,0
Lane Grp Cap (vph)	197	671	570	212	687	584	405	565	480	167	481	409
v/s Ratio Prot	0.08	0.34		c0.09	0.35		0.04	c0.27		c0.04	0.12	
v/s Ratio Perm	0.36		0.03	c0.38		0.13	0.14		0.10	0.22		0.00
v/c Ratio	1.00	0.94	0.10	1.02	0.96	0.36	0.45	0.88	0.32	0.86	0.46	0.02
Uniform Delay, d1	31.1	36.8	25.2	32.6	36.6	27.3	24.6	39.4	31.9	36.0	37.1	32.8
Progression Factor	1.00	1.00	1.00	1,00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Incremental Delay, d2	64.1	21.5	0.1	66.8	24.4	0.4	0.8	17.8	1.7	33.9	3.1	0.1
Delay (s)	95.2	58.3	25.2	99.3	61.0	27.6	25.4	57.1	33.7	69.9	40.2	32.9
Level of Service	F	Е	С	F	Е	С	С	E	С	E	D	С
Approach Delay (s)		62.8			58.1		PART OF STREET	43.8			50.7	
Approach LOS		E			Ë			D			D	
Intersection Summary												
HCM Average Control Dela	y		54.4	Н	CM Leve	I of Servi	ce		D			
HCM Volume to Capacity ra	atio		0.91	Definition of		104-34-051-57						
Actuated Cycle Length (s)			118.8	S	um of los	t time (s)			18.0			
Intersection Capacity Utiliza	ation		87.5%	l l	CU Level	of Servic	9		E			
Analysis Period (min)	(A 101 A) A (A 101 A)		15	an sayan ayay in sha in in 1990.								Perfective Contraction
c Critical Lane Group												

: Mag 3	٨	-+	\mathbf{i}	4	-	Ł	*	Ť	*	° ↓	ŧ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ኘ	↑	7	ሻ	ተ	7	ሻ	* †	7	ጘ	/	7
Volume (vph)	118	389	92	362	266	136	69	487	455	96	203	37
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	6.0	6.0	6.0	6,0	6.0	6.0	6.0	6.0	6.0	6,0	6.0	6.0
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.95	1.00	1.00	0.95	1.00
Fa	1.00	1.00	0.85	1.00	1.00	0.85	1.00	1.00	0.85	1,00	1.00	0,85
Flt Protected	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00
Satd, Flow (prot)	1770	1863	1583	1770	1863	1583	1770	3539	1583	1770	3539	1583
Fit Permitted	0.59	1.00	1.00	0.09	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00
Satd. Flow (perm)	1092	1863	1583	175	1863	1583	1770	3539	1583	1770	3539	<u> 1583 </u>
Peak-hour factor, PHF	0.71	0.71	0.71	0.94	0.94	0.94	0.90	0.90	0.90	0.91	0.91	0.91
Adj. Flow (vph)	166	548	130	385	283	145	77	541	506	105	223	41
RTOR Reduction (vph)	0	0	51	0	0	82	0	0	289	0	0	31
Lane Group Flow (vph)	166	548	79	385	283	63	77	541	217	105	223	10
Turn Type	pm+pt		Perm	pm+pt		Perm	Prot		Perm	Prot		Perm
Protected Phases	7	4		3	8		5	2		1	6	
Permitted Phases	4		4	8		8			2			6
Actuated Green, G (s)	43.6	36.6	36.6	65.3	52.3	52.3	8.2	28.3	28,3	8.0	28.1	28.1
Effective Green, g (s)	43.6	36.6	36.6	65.3	52.3	52.3	8.2	28.3	28.3	8.0	28.1	28.1
Actuated g/C Ratio	0.36	0.31	0.31	0.55	0.44	0.44	0.07	0.24	0.24	0.07	0.23	0.23
Clearance Time (s)	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
Lane Grp Cap (vph)	438	570	484	398	815	692	121	837	375	118	831	372
v/s Ratio Prot	0.02	0.29	uguela ellert	c0.18	0.15	31 69 20 20	0.04	c0.15		c0.06	0.06	
v/s Ratio Perm	0.12		0.05	c0.34		0.04			0.14			0.01
v/c Ratio	0.38	0.96	0.16	0.97	0.35	0.09	0.64	0.65	0.58	0.89	0.27	0.03
Uniform Delay, d1	26.7	40.8	30.3	37.0	22.3	19.7	54.2	41.1	40.4	55.4	37.4	35.2
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Incremental Delay, d2	0.6	28.1	0.2	36.2	0.3	0.1	10.5	3.8	6.4	49.7	0.8	0.1
Delay (s)	27.2	68.9	30,5	73.2	22,6	19.8	64.7	45.0	46.8	105.1	38.1	35.3
Level of Service	С	Ε	С	Е	С	В	E	D	D	F	D	D
Approach Delay (s)		54,8		salse dui	46.0			47.1			56.9	
Approach LOS		D			D			D			E	
Intersection Summary												
HCM Average Control Delay			50.1	H	CM Level	of Servic	e		D			
HCM Volume to Capacity rat	İÒ		0.79									
Actuated Cycle Length (s)			119.6	S	um of los	t time (s)			12.0		······································	
Intersection Capacity Utilizat	ion		79.3%)C	U Level	of Service			D	Southernational		
Analysis Period (min)			15									
c Critical Lane Group				SING CONTRACTOR								Towerselfe

в

→ ← < `> ✓ _ ^

Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	ሻ	t	†	f	ሻ	Ť.
Volume (veh/h)	57	507	240	160	157	41
Sign Control		Free	Free		Stop	
Grade		0%	0%		0%	0.07
Peak Hour Factor	0.92	0.92	0.87	0.87	0.87	0.87
Hourly flow rate (vph)	62	551	276	184	180	4/
Pedestrians				hudhahidi (ca baran)		
Lane Width (ft)					in langen offic	
Walking Speed (ft/s)					Pagainagina	
Percent Blockage						
Right turn flare (veh)	an and a construct provided by the	the state of the second second	N		i a contra c	ning the program from the ball
Median type and an analysis and		inone	INONE			
Median storage ven)					-	
Upstream signal (II)						
px, platoon unblocked	460				051	276
vC1_stage 1_conf.vol	400					
vC2 stage 2 conf.vol			Constant of an including with the second s			
vCz, stage z obili vol	460				951	276
tou, andiocked voi	400				64	62
tC. 2 stane (s)						
10, 2010g0 (0)	22				3.5	3.3
p0 queue free %	94	1919 (mi di karan di kiji i i			34	94
cM capacity (veh/h)	1101				272	763
	ER 4	E E A	VALD A	1MD 0	001	CD 0
Direction, Lane #	EB I	EB 2	VVB I	WB Z	301	0D Z 17
Volume I otal	62 00	551	2/6	184	180	4/
	62 0	U A	U	U 104	טאו ה	U 7
volume Kight	1101	1700	1700	104	070	47
CSH Volumente Conseite	0.00	1700	0.46	0.44	212	103
Volume to capacity	0.00	0.32	0.10		107	5 U.U.U.
Queue Length 95th (it)	4 0 c	U A A	U A A	00	107	100
Long LOS	С.О Л	υ.υ	W.W.	U.U	+∪.J ⊑	IU.V R
Lane LOS Approach Pipion (c)	H A	eren and a second	Sant ArA		ୁ ସ୍ଥାନ	u Alexandria
Approach LOS	0.3		0.0		04.0 П	
Approach LOo					ע	
Intersection Summary						
Average Delay		7005118228264444	6.4			
Intersection Capacity Utiliza	ation		42,0%	10 10	U Level o	of Service
Analysis Period (min)		المالية وحور وحور وحور	15	11° m. tratsmenet		unita anti-
	s sourre de la company	EXMENDIA -			a da	Spender Merginis